Departamento de Matemáticas y Est., Facultad de Ciencias Exactas y Nat., UDENAR, Clle 18-Cr 50, C. U. Torobajo, Pasto, Colombia.
Math Biosci. 2013 Nov;246(1):84-93. doi: 10.1016/j.mbs.2013.08.005. Epub 2013 Aug 16.
In this work we propose a system of non linear ordinary differential equations for the dynamics of Mycobacterium tuberculosis (Mtb) within the host, in order to study the role of macrophages, T cells and antibiotics in the control of sensitive and resistant Mtb. Conditions for the persistence of sensitive and resistant bacteria are given in terms of the secondary infections produced by bacteria and macrophages, the immune response, and the antibiotic treatment. Model analysis predicts backward bifurcations for certain values of the parameters. In this case, the dynamics is characterized by the coexistence of two infection states with low and high bacteria load, respectively.
在这项工作中,我们提出了一个用于研究宿主中结核分枝杆菌(Mtb)动力学的非线性常微分方程组系统,以研究巨噬细胞、T 细胞和抗生素在控制敏感和耐药 Mtb 中的作用。敏感和耐药细菌持续存在的条件是由细菌和巨噬细胞产生的二次感染、免疫反应和抗生素治疗来决定的。模型分析预测了某些参数值下的反向分歧。在这种情况下,动力学的特征是分别具有低和高细菌载量的两种感染状态的共存。