Gammack D, Doering C R, Kirschner D E
Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 49109, USA.
J Math Biol. 2004 Feb;48(2):218-42. doi: 10.1007/s00285-003-0232-8. Epub 2003 Aug 20.
The immune response to Mycobacterium tuberculosis (Mtb) infection is the formation of multicellular lesions, or granolomas, in the lung of the individual. However, the structure of the granulomas and the spatial distribution of the immune cells within is not well understood. In this paper we develop a mathematical model investigating the early and initial immune response to Mtb. The model consists of coupled reaction-diffusion-advection partial differential equations governing the dynamics of the relevant macrophage and bacteria populations and a bacteria-produced chemokine. Our novel application of mathematical concepts of internal states and internal velocity allows us to begin to study this unique immunological structure. Volume changes resulting from proliferation and death terms generate a velocity field by which all cells are transported within the forming granuloma. We present numerical results for two distinct infection outcomes: controlled and uncontrolled granuloma growth. Using a simplified model we are able to analytically determine conditions under which the bacteria population decreases, representing early clearance of infection, or grows, representing the initial stages of granuloma formation.
对结核分枝杆菌(Mtb)感染的免疫反应是个体肺部形成多细胞病变,即肉芽肿。然而,肉芽肿的结构以及其中免疫细胞的空间分布尚不清楚。在本文中,我们开发了一个数学模型来研究对Mtb的早期和初始免疫反应。该模型由耦合的反应 - 扩散 - 平流偏微分方程组成,这些方程控制着相关巨噬细胞和细菌群体以及一种细菌产生的趋化因子的动态变化。我们对内部状态和内部速度数学概念的新颖应用使我们能够开始研究这种独特的免疫结构。由增殖和死亡项导致的体积变化产生一个速度场,通过该速度场所有细胞在形成的肉芽肿内进行运输。我们给出了两种不同感染结果的数值结果:受控和不受控的肉芽肿生长。使用一个简化模型,我们能够分析确定细菌群体减少(代表感染的早期清除)或增长(代表肉芽肿形成的初始阶段)的条件。