Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India.
ISA Trans. 2013 Nov;52(6):781-94. doi: 10.1016/j.isatra.2013.07.009. Epub 2013 Aug 16.
In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its' own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters.
本文提出了一种新的元启发式搜索方法,称为猫群优化(CSO)算法,用于确定 FIR 低通、高通、带通和带阻滤波器的最佳最优脉冲响应系数,以满足各自的理想频率响应特性。CSO 是通过观察猫的行为生成的,由两个子模型组成。在 CSO 中,可以决定在迭代中使用多少只猫。每只猫都有自己的位置,由 M 维组成,每个维度的速度,一个表示猫适应适应度函数的适应值,以及一个标志来识别猫是处于搜索模式还是跟踪模式。最终的解决方案将是其中一只猫的最佳位置。CSO 会保留最佳解决方案,直到迭代结束。将提出的基于 CSO 的方法的结果与其他知名优化方法(如实码遗传算法(RGA)、标准粒子群优化(PSO)和差分进化(DE))进行了比较。基于 CSO 的结果证实了所提出的 CSO 用于解决 FIR 滤波器设计问题的优越性。与 RGA、传统 PSO 和 DE 相比,基于 CSO 设计的 FIR 滤波器的性能证明更为优越。仿真结果还表明,CSO 是其他相关技术中最好的优化器,不仅在收敛速度方面,而且在设计滤波器的最优性能方面也是如此。