Suppr超能文献

严重肥胖与输尿管镜检查期间辐射剂量率增加 3 倍相关。

Severe obesity is associated with 3-fold higher radiation dose rate during ureteroscopy.

机构信息

Department of Urology, University of Washington School of Medicine, Seattle, WA.

出版信息

Urology. 2013 Oct;82(4):780-5. doi: 10.1016/j.urology.2013.06.030. Epub 2013 Aug 16.

Abstract

OBJECTIVE

To investigate and characterize the association between fluoroscopy radiation dose rate and various patient size metrics during ureteroscopy.

MATERIALS AND METHODS

Fluoroscopy data were collected from 100 patients undergoing ureteroscopy for stone disease. Radiation dose rates were determined from fluoroscopy dose and time. Estimated entrance skin dose was calculated from air kerma (AK) by applying correction factors. Effective dose (ED) was estimated with Monte Carlo-based simulation software. Patient size metrics included body mass index (BMI), anterior-posterior (AP) midline distance, AP transrenal thickness, and region of interest (ROI) pixel value magnitude on computed tomography scout. Univariate and multivariate regression analyses were performed to determine the association between AK dose rate and patient size metrics, adjusting for laterality and stone location.

RESULTS

Obese patients (>30 kg/m(2)) comprised 46% of the cohort. Mean fluoroscopy time, displayed AK, entrance skin dose, and ED were 4.2 ± 6.0 second, 1.2 ± 2.1 mGy, 1.2 ± 2.2 mGy, and 0.08 ± 0.15 mSv, respectively. Mean AK dose rate and ED dose rates were 0.30 ± 0.23 mGy/second and 0.021 ± 0.016 mSv/second, respectively. Compared with the nonobese category, the highest BMI category (≥35 kg/m(2)) had over a 3-fold higher mean AK rate (0.50 vs 0.16 mGy/second). On univariate and multivariate analysis, BMI, AP midline distance, AP transrenal thickness, and computed tomography scout region of interest pixel value magnitude were each significantly associated with dose rate.

CONCLUSION

Larger patients experience higher radiation dose rates under fluoroscopy. Severely obese patients receive 3-fold higher dose rates compared with nonobese patients. Given the higher incidence of stone disease in obese patients, all attempts should be made to minimize radiation exposure during ureteroscopy.

摘要

目的

研究并描述输尿管镜检查过程中透视辐射剂量率与各种患者体型指标之间的关系。

材料与方法

收集了 100 例因结石病而行输尿管镜检查的患者的透视数据。从透视剂量和时间确定辐射剂量率。应用修正因子从空气比释动能(AK)计算估算的皮肤入射剂量。采用基于蒙特卡罗的模拟软件估算有效剂量(ED)。患者体型指标包括体重指数(BMI)、前后(AP)中线距离、AP 经肾厚度和 CT 扫描的感兴趣区(ROI)像素值幅度。进行单变量和多变量回归分析,以确定 AK 剂量率与患者体型指标之间的关系,同时调整侧别和结石位置。

结果

肥胖患者(>30kg/m²)占队列的 46%。平均透视时间、显示 AK、皮肤入射剂量和 ED 分别为 4.2±6.0 秒、1.2±2.1mGy、1.2±2.2mGy 和 0.08±0.15mSv。平均 AK 剂量率和 ED 剂量率分别为 0.30±0.23mGy/秒和 0.021±0.016mSv/秒。与非肥胖组相比,最高 BMI 组(≥35kg/m²)的平均 AK 率高出 3 倍以上(0.50 比 0.16mGy/秒)。在单变量和多变量分析中,BMI、AP 中线距离、AP 经肾厚度和 CT 扫描 ROI 像素值幅度均与剂量率显著相关。

结论

体型较大的患者在透视下接受的辐射剂量率更高。与非肥胖患者相比,肥胖患者的剂量率高出 3 倍。鉴于肥胖患者结石病发病率较高,应尽一切努力在输尿管镜检查期间尽量减少辐射暴露。

相似文献

1
Severe obesity is associated with 3-fold higher radiation dose rate during ureteroscopy.
Urology. 2013 Oct;82(4):780-5. doi: 10.1016/j.urology.2013.06.030. Epub 2013 Aug 16.
2
Radiation Dosimetry for Ureteroscopy Patients: A Phantom Study Comparing the Standard and Obese Patient Models.
J Endourol. 2016 Jan;30(1):57-62. doi: 10.1089/end.2015.0419. Epub 2015 Dec 10.
3
Effective and organ specific radiation doses from videourodynamics in children.
J Urol. 2013 Oct;190(4):1364-9. doi: 10.1016/j.juro.2013.05.023. Epub 2013 May 21.
4
DO THE BMI AND SURGEON INFLUENCE THE PATIENT DOSE IN FLUOROSCOPICALLY GUIDED LUMBAR DISCECTOMY AND FUSION?☆.
Radiat Prot Dosimetry. 2019 Dec 31;185(4):472-482. doi: 10.1093/rpd/ncz039.
5
Prospective systematic intervention to reduce patient exposure to radiation during pediatric ureteroscopy.
J Urol. 2013 Oct;190(4 Suppl):1474-8. doi: 10.1016/j.juro.2013.03.006. Epub 2013 Mar 6.
6
Changing Default Fluoroscopy Equipment Settings Decreases Entrance Skin Dose in Patients.
J Urol. 2016 Apr;195(4 Pt 1):992-7. doi: 10.1016/j.juro.2015.10.088. Epub 2015 Oct 23.
7
Determination of patient radiation dose during ureteroscopic treatment of urolithiasis using a validated model.
J Urol. 2012 Mar;187(3):920-4. doi: 10.1016/j.juro.2011.10.159. Epub 2012 Jan 20.
8
Fluoroless ureteroscopy: zero-dose fluoroscopy during ureteroscopic treatment of urinary-tract calculi.
J Endourol. 2013 Apr;27(4):432-7. doi: 10.1089/end.2012.0478. Epub 2013 Feb 15.
9
Tracking of radiation exposure in pediatric stone patients: The time is now.
J Pediatr Urol. 2015 Dec;11(6):339.e1-5. doi: 10.1016/j.jpurol.2015.08.008. Epub 2015 Sep 30.
10
PATIENT DOSE IN DIGITAL RADIOGRAPHY UTILISING BMI CLASSIFICATION.
Radiat Prot Dosimetry. 2019 Aug 1;184(2):155-167. doi: 10.1093/rpd/ncy194.

引用本文的文献

1
Factors affecting radiation exposure in patients undergoing endoscopic treatment for urolithiasis.
Urolithiasis. 2024 Oct 14;52(1):148. doi: 10.1007/s00240-024-01648-2.
3
Radiation exposure of patients during endourological procedures.
World J Urol. 2024 Apr 27;42(1):266. doi: 10.1007/s00345-024-04953-y.
4
Ocular radiation exposure is negligible in normal volume endourological practice.
Ann R Coll Surg Engl. 2025 Feb;107(2):141-145. doi: 10.1308/rcsann.2024.0004. Epub 2024 Mar 6.
5
Radiation protection measures during endourological therapies.
Asian J Urol. 2023 Jul;10(3):215-225. doi: 10.1016/j.ajur.2022.12.001. Epub 2022 Dec 26.
6
Reducing the rate of negative ureteroscopy: predictive factors and the role of preoperative imaging.
Ann R Coll Surg Engl. 2022 Sep;104(8):588-593. doi: 10.1308/rcsann.2021.0260. Epub 2022 Feb 8.
7
Obesity and Kidney Stone Procedures.
Rev Urol. 2020;22(1):24-29.
8
Radiation exposure during retrograde intrarenal surgery (RIRS): a prospective multicenter evaluation.
World J Urol. 2021 Jan;39(1):217-224. doi: 10.1007/s00345-020-03160-9. Epub 2020 Mar 21.
9
NZO/HlLtJ as a novel model for the studies on the role of metabolic syndrome in acute radiation toxicity.
Int J Radiat Biol. 2020 Jan;96(1):93-99. doi: 10.1080/09553002.2018.1547437. Epub 2019 Jan 14.

本文引用的文献

1
Obesity triples the radiation dose of stone protocol computerized tomography.
J Urol. 2013 Jun;189(6):2142-6. doi: 10.1016/j.juro.2012.12.029. Epub 2012 Dec 20.
2
Fluoroless ureteroscopy: zero-dose fluoroscopy during ureteroscopic treatment of urinary-tract calculi.
J Endourol. 2013 Apr;27(4):432-7. doi: 10.1089/end.2012.0478. Epub 2013 Feb 15.
3
Radiation exposure during continuous and pulsed fluoroscopy.
J Endourol. 2013 Mar;27(3):384-8. doi: 10.1089/end.2012.0213. Epub 2012 Nov 28.
4
Prevalence of kidney stones in the United States.
Eur Urol. 2012 Jul;62(1):160-5. doi: 10.1016/j.eururo.2012.03.052. Epub 2012 Mar 31.
5
Pulsed fluoroscopy in ureteroscopy and percutaneous nephrolithotomy.
Urology. 2012 Jun;79(6):1230-5. doi: 10.1016/j.urology.2012.01.027. Epub 2012 Apr 1.
6
Prospective measurement of patient exposure to radiation during pediatric ureteroscopy.
J Urol. 2012 Apr;187(4):1408-14. doi: 10.1016/j.juro.2011.12.013. Epub 2012 Feb 16.
7
Determination of patient radiation dose during ureteroscopic treatment of urolithiasis using a validated model.
J Urol. 2012 Mar;187(3):920-4. doi: 10.1016/j.juro.2011.10.159. Epub 2012 Jan 20.
8
Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010.
JAMA. 2012 Feb 1;307(5):491-7. doi: 10.1001/jama.2012.39. Epub 2012 Jan 17.
9
10
Calculating the peak skin dose resulting from fluoroscopically guided interventions. Part I: Methods.
J Appl Clin Med Phys. 2011 Nov 15;12(4):3670. doi: 10.1120/jacmp.v12i4.3670.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验