Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, PR China.
Phys Chem Chem Phys. 2013 Oct 21;15(39):16579-85. doi: 10.1039/c3cp51279g. Epub 2013 Aug 20.
Layered Li2MnO3·3LiNi0.5-xMn0.5-xCo2xO2 (x = 0, 0.05, 0.1, 0.165) microspheres with Mn-rich core were successfully synthesized by a simple two-step precipitation calcination method and intensively evaluated as cathode materials for lithium ion batteries. The X-ray powder diffractometry (XRD) results indicate that the growth of Li2MnO3-like regions is impeded due to the presence of cobalt (Co) in the material. The field-emission scanning electron microscopy (FESEM) data reveal the core-shell-like structure with a Mn-rich core in the as-prepared particles. The charge-discharge testing reveals that the capacity is markedly improved by adding Co. The activation of the cathode after Co doping becomes easier and can be accomplished completely when charged to 4.6 V at the C/40 rate in the initial cycle. Superior electrochemical performances are obtained for samples with x = 0.05 and 0.1. The corresponding initial discharge capacities are separately 281 and 285 mA h g(-1) at C/40 between 2 and 4.6 V at room temperature. After 250 cycles at C/2, the respective capacity retentions are 71.2% and 70.4%, which are better compared to the normal Li-excess Li2MnO3·3LiNi0.4Mn0.4Co0.2O2 sample with a uniform distribution of Mn element in the particles. The initial discharge capacities of both samples are approximately 250 mA h g(-1) at a rate of C/2 between 2 and 4.6 V at 55 °C after activation. Furthermore, the samples are investigated by electrochemical impedance spectroscopy (EIS) at room and elevated temperature, revealing that the key factor affecting electrochemical performance is the charge transfer resistance in the particles.
层状 Li2MnO3·3LiNi0.5-xMn0.5-xCo2xO2(x=0、0.05、0.1、0.165)具有富 Mn 核的微球通过简单的两步沉淀煅烧法成功合成,并作为锂离子电池的阴极材料进行了深入评估。X 射线粉末衍射(XRD)结果表明,由于材料中存在钴(Co),Li2MnO3 样区域的生长受到阻碍。场发射扫描电子显微镜(FESEM)数据显示,在制备的颗粒中存在富 Mn 核的核壳结构。充放电测试表明,添加 Co 可以显著提高容量。在初始循环中以 C/40 的速率充电至 4.6 V 时,Co 掺杂后的阴极的活化变得更容易并且可以完全完成。对于 x=0.05 和 0.1 的样品,获得了优异的电化学性能。相应的初始放电容量分别为 281 和 285 mA h g(-1),在室温下以 C/40 速率在 2 至 4.6 V 之间。在 C/2 下循环 250 次后,容量保持率分别为 71.2%和 70.4%,与具有均匀分布的 Mn 元素的常规 Li 过量 Li2MnO3·3LiNi0.4Mn0.4Co0.2O2 样品相比更好。两个样品的初始放电容量在激活后分别为 55°C 时以 C/2 的速率在 2 至 4.6 V 之间约为 250 mA h g(-1)。此外,在室温及高温下通过电化学阻抗谱(EIS)对样品进行了研究,结果表明影响电化学性能的关键因素是颗粒中的电荷转移电阻。