Suppr超能文献

低温还原引入的氧空位和堆垛层错改善了 LiMnO 纳米带作为锂离子电池正极的电化学性能。

Oxygen Vacancies and Stacking Faults Introduced by Low-Temperature Reduction Improve the Electrochemical Properties of LiMnO Nanobelts as Lithium-Ion Battery Cathodes.

机构信息

College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China.

Shenzhen Research Institute of Wuhan University , Shenzhen 518000, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38545-38555. doi: 10.1021/acsami.7b12080. Epub 2017 Oct 27.

Abstract

Among the Li-rich layered oxides LiMnO has significant theoretical capacity as a cathode material for Li-ion batteries. Pristine LiMnO generally has to be electrochemically activated in the first charge-discharge cycle which causes very low Coulombic efficiency and thus deteriorates its electrochemical properties. In this work, we show that low-temperature reduction can produce a large amount of structural defects such as oxygen vacancies, stacking faults, and orthorhombic LiMnO in LiMnO. The Rietveld refinement analysis shows that, after a reduction reaction with stearic acid at 340 °C for 8 h, pristine LiMnO changes into a LiMnO-LiMnO (0.71/0.29) composite, and the monoclinic LiMnO changes from LiMnO in the pristine LiMnO (P-LiMnO) to LiMnO in the reduced LiMnO (R-LiMnO), indicating the production of a large amount of oxygen vacancies in the R-LiMnO. High-resolution transmission electron microscope images show that a high density of stacking faults is also introduced by the low-temperature reduction. When measured as a cathode material for Li-ion batteries, R-LiMnO shows much better electrochemical properties than P-LiMnO. For example, when charged-discharged galvanostatically at 20 mA·g in a voltage window of 2.0-4.8 V, R-LiMnO has Coulombic efficiency of 77.1% in the first charge-discharge cycle, with discharge capacities of 213.8 and 200.5 mA·h·g in the 20th and 30th cycles, respectively. In contrast, under the same charge-discharge conditions, P-LiMnO has Coulombic efficiency of 33.6% in the first charge-discharge cycle, with small discharge capacities of 80.5 and 69.8 mA·h·g in the 20th and 30th cycles, respectively. These materials characterizations, and electrochemical measurements show that low-temperature reduction is one of the effective ways to enhance the performances of LiMnO as a cathode material for Li-ion batteries.

摘要

在富锂层状氧化物中,LiMnO 作为锂离子电池正极材料具有显著的理论容量。然而,未经电化学激活的原始 LiMnO 在首次充放电循环中通常会导致非常低的库仑效率,从而恶化其电化学性能。在这项工作中,我们证明低温还原可以在 LiMnO 中产生大量结构缺陷,如氧空位、堆垛层错和正交 LiMnO。Rietveld 精修分析表明,在 340°C 下与硬脂酸进行还原反应 8 小时后,原始 LiMnO 转变为 LiMnO-LiMnO(0.71/0.29)复合材料,而单斜 LiMnO 则由原始 LiMnO(P-LiMnO)中的 LiMnO 转变为还原 LiMnO(R-LiMnO)中的 LiMnO,表明 R-LiMnO 中产生了大量的氧空位。高分辨率透射电子显微镜图像表明,低温还原也引入了高密度的堆垛层错。当作为锂离子电池正极材料进行测量时,R-LiMnO 的电化学性能明显优于 P-LiMnO。例如,在 2.0-4.8 V 的电压窗口中以 20 mA·g 的恒电流进行充放电时,R-LiMnO 在首次充放电循环中的库仑效率为 77.1%,第 20 次和第 30 次循环的放电容量分别为 213.8 和 200.5 mA·h·g。相比之下,在相同的充放电条件下,P-LiMnO 在首次充放电循环中的库仑效率为 33.6%,第 20 次和第 30 次循环的放电容量分别为 80.5 和 69.8 mA·h·g。这些材料特性和电化学测量表明,低温还原是提高 LiMnO 作为锂离子电池正极材料性能的有效方法之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验