Suppr超能文献

硅纳米粒子有助于马来西亚热带雨林林下草本植物 Mapania caudata 的结构性叶色形成。

Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata.

机构信息

Samuel Roberts Noble Electron Microscopy Laboratory, University of Oklahoma, Norman, OK 73019, USA.

出版信息

Ann Bot. 2013 Oct;112(6):1141-8. doi: 10.1093/aob/mct172. Epub 2013 Aug 19.

Abstract

BACKGROUND AND AIMS

Blue-green iridescence in the tropical rainforest understorey sedge Mapania caudata creates structural coloration in its leaves through a novel photonic mechanism. Known structures in plants producing iridescent blues consist of altered cellulose layering within cell walls and in special bodies, and thylakoid membranes in specialized plastids. This study was undertaken in order to determine the origin of leaf iridescence in this plant with particular attention to nano-scale components contributing to this coloration.

METHODS

Adaxial walls of leaf epidermal cells were characterized using high-pressure-frozen freeze-substituted specimens, which retain their native dimensions during observations using transmission and scanning microscopy, accompanied by energy-dispersive X-ray spectroscopy to identify the role of biogenic silica in wall-based iridescence. Biogenic silica was experimentally removed using aqueous Na2CO3 and optical properties were compared using spectral reflectance.

KEY RESULTS AND CONCLUSIONS

Blue iridescence is produced in the adaxial epidermal cell wall, which contains helicoid lamellae. The blue iridescence from cell surfaces is left-circularly polarized. The position of the silica granules is entrained by the helicoid microfibrillar layers, and granules accumulate at a uniform position within the helicoids, contributing to the structure that produces the blue iridescence, as part of the unit cell responsible for 2 ° Bragg scatter. Removal of silica from the walls eliminated the blue colour. Addition of silica nanoparticles on existing cellulosic lamellae is a novel mechanism for adding structural colour in organisms.

摘要

背景和目的

热带雨林下层莎草 Mapania caudata 的蓝绿色虹彩通过一种新颖的光子机制在其叶片中产生结构色。在产生虹彩蓝色的植物中,已知的结构包括细胞壁和特殊结构中的纤维素层的改变,以及专门质体中的类囊体膜。这项研究旨在确定这种植物叶片虹彩的起源,特别关注纳米级成分对这种颜色的贡献。

方法

使用高压冷冻冷冻替代标本对叶表皮细胞的腹面壁进行了特征描述,这些标本在使用透射和扫描显微镜进行观察时保留了其天然尺寸,并结合能量色散 X 射线光谱法来确定生物硅在基于细胞壁的虹彩中的作用。使用含水 Na2CO3 实验去除生物硅,并使用光谱反射率比较光学性质。

主要结果和结论

在含有螺旋层的腹面表皮细胞壁中产生了蓝色虹彩。来自细胞表面的蓝色虹彩具有左旋圆偏振。硅颗粒的位置被螺旋微纤维层束缚,并且颗粒在螺旋内的均匀位置处积累,有助于产生蓝色虹彩的结构,作为负责 2°布拉格散射的单元晶格的一部分。从细胞壁中去除硅消除了蓝色。在现有的纤维素层上添加纳米级硅颗粒是为生物体添加结构色的一种新机制。

相似文献

2
Living jewels: iterative evolution of iridescent blue leaves from helicoidal cell walls.
Ann Bot. 2024 Jun 7;134(1):131-150. doi: 10.1093/aob/mcae045.
3
Function of blue iridescence in tropical understorey plants.
J R Soc Interface. 2010 Dec 6;7(53):1699-707. doi: 10.1098/rsif.2010.0201. Epub 2010 Jun 2.
4
Lamelloplasts and minichloroplasts in Begoniaceae: iridescence and photosynthetic functioning.
J Plant Res. 2018 Jul;131(4):655-670. doi: 10.1007/s10265-018-1020-2. Epub 2018 Mar 2.
5
Heterogeneity of silica and glycan-epitope distribution in epidermal idioblast cell walls in Adiantum raddianum laminae.
Planta. 2013 Jun;237(6):1453-64. doi: 10.1007/s00425-013-1856-6. Epub 2013 Feb 22.
7
Structural colours in the frond of .
Interface Focus. 2019 Feb 6;9(1):20180055. doi: 10.1098/rsfs.2018.0055. Epub 2018 Dec 14.
8
Structural colour from helicoidal cell-wall architecture in fruits of .
J R Soc Interface. 2016 Nov;13(124). doi: 10.1098/rsif.2016.0645.
9
Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency.
Nat Plants. 2016 Oct 24;2(11):16162. doi: 10.1038/nplants.2016.162.

引用本文的文献

2
Polysaccharide Nanocrystals-Based Chiral Nematic Structures: From Self-Assembly Mechanisms, Regulation, to Applications.
ACS Nano. 2024 Aug 27;18(34):22675-22708. doi: 10.1021/acsnano.4c03130. Epub 2024 Aug 13.
3
Living jewels: iterative evolution of iridescent blue leaves from helicoidal cell walls.
Ann Bot. 2024 Jun 7;134(1):131-150. doi: 10.1093/aob/mcae045.
4
Is there silicon in flowers and what does it tell us?
Ecol Evol. 2023 Oct 17;13(10):e10630. doi: 10.1002/ece3.10630. eCollection 2023 Oct.
5
The Plant Leaf: A Biomimetic Resource for Multifunctional and Economic Design.
Biomimetics (Basel). 2023 Apr 3;8(2):145. doi: 10.3390/biomimetics8020145.
7
Silicon nanoparticles (SiNPs) in sustainable agriculture: major emphasis on the practicality, efficacy and concerns.
Nanoscale Adv. 2021 May 31;3(14):4019-4028. doi: 10.1039/d1na00233c. eCollection 2021 Jul 13.
8
Photonics in nature and bioinspired designs: sustainable approaches for a colourful world.
Nanoscale Adv. 2020 Sep 14;2(11):5106-5129. doi: 10.1039/d0na00445f. eCollection 2020 Nov 11.
9
Silica nanoparticles as novel sustainable approach for plant growth and crop protection.
Heliyon. 2022 Jul 8;8(7):e09908. doi: 10.1016/j.heliyon.2022.e09908. eCollection 2022 Jul.

本文引用的文献

1
Cycling silicon - the role of accumulation in plants.
New Phytol. 2003 Jun;158(3):419-421. doi: 10.1046/j.1469-8137.2003.00778.x.
2
Pointillist structural color in Pollia fruit.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15712-5. doi: 10.1073/pnas.1210105109. Epub 2012 Sep 10.
3
The original colours of fossil beetles.
Proc Biol Sci. 2012 Mar 22;279(1731):1114-21. doi: 10.1098/rspb.2011.1677. Epub 2011 Sep 28.
4
Free-standing mesoporous silica films with tunable chiral nematic structures.
Nature. 2010 Nov 18;468(7322):422-5. doi: 10.1038/nature09540.
5
Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales.
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11676-81. doi: 10.1073/pnas.0909616107. Epub 2010 Jun 14.
6
Function of blue iridescence in tropical understorey plants.
J R Soc Interface. 2010 Dec 6;7(53):1699-707. doi: 10.1098/rsif.2010.0201. Epub 2010 Jun 2.
7
Structural colour and iridescence in plants: the poorly studied relations of pigment colour.
Ann Bot. 2010 Apr;105(4):505-11. doi: 10.1093/aob/mcq007. Epub 2010 Feb 7.
8
Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose?
New Phytol. 2010 Apr;186(2):385-91. doi: 10.1111/j.1469-8137.2009.03176.x. Epub 2010 Feb 2.
9
Contributions of iridescence to floral patterning.
Commun Integr Biol. 2009 May;2(3):230-2. doi: 10.4161/cib.2.3.8084.
10
Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators.
Science. 2009 Jan 2;323(5910):130-3. doi: 10.1126/science.1166256.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验