Francis H Burr Proton Therapy Center, Massachusetts General Hospital, Boston, MA, USA.
Phys Med Biol. 2013 Sep 21;58(18):6337-53. doi: 10.1088/0031-9155/58/18/6337. Epub 2013 Aug 22.
Intensity-modulated proton therapy (IMPT) delivered with beam scanning is currently available at a limited number of proton centers. However, a simplified form of IMPT, the technique of field 'patching', has long been a standard practice in proton therapy centers. In field patching, different parts of the target volume are treated from different directions, i.e., a part of the tumor gets either full dose from a radiation field, or almost no dose. Thus, patching represents a form of binary intensity modulation. This study explores the limitations of the standard binary field patching technique, and evaluates possible dosimetric advantages of continuous dose modulations in IMPT. Specifics of the beam delivery technology, i.e., pencil beam scanning versus passive scattering and modulation, are not investigated. We have identified two geometries of target volumes and organs at risk (OAR) in which the use of field patching is severely challenged. We focused our investigations on two patient cases that exhibit these geometries: a paraspinal tumor case and a skull-base case. For those cases we performed treatment planning comparisons of three-dimensional conformal proton therapy (3DCPT) with field patching versus IMPT, using commercial and in-house software, respectively. We also analyzed the robustness of the resulting plans with respect to systematic setup errors of ±1 mm and range errors of ±2.5 mm. IMPT is able to better spare OAR while providing superior dose coverage for the challenging cases identified above. Both 3DCPT and IMPT are sensitive to setup errors and range uncertainties, with IMPT showing the largest effect. Nevertheless, when delivery uncertainties are taken into account IMPT plans remain superior regarding target coverage and OAR sparing. On the other hand, some clinical goals, such as the maximum dose to OAR, are more likely to be unmet with IMPT under large range errors. IMPT can potentially improve target coverage and OAR sparing in challenging cases, even when compared with the relatively complicated and time consuming field patching technique. While IMPT plans tend to be more sensitive to delivery uncertainties, their dosimetric advantage generally holds. Robust treatment planning techniques may further reduce the sensitivity of IMPT plans.
调强质子治疗(IMPT)采用束流扫描,目前仅在少数质子中心提供。然而,调强质子治疗的一种简化形式,即“补丁场”技术,长期以来一直是质子治疗中心的标准实践。在补丁场中,靶区的不同部分从不同方向进行治疗,即肿瘤的一部分从一个射野获得全剂量,或者几乎没有剂量。因此,补丁场代表了一种二进制强度调制的形式。本研究探讨了标准二进制补丁场技术的局限性,并评估了 IMPT 中连续剂量调制的可能的剂量学优势。束流传输技术的细节,即铅笔束扫描与被动散射和调制,不在研究范围内。我们已经确定了两种靶区和危及器官(OAR)的几何形状,在这些形状中,补丁场的使用受到严重挑战。我们将研究重点放在了两个表现出这些几何形状的患者病例上:一个脊柱旁肿瘤病例和一个颅底病例。对于这些病例,我们分别使用商业和内部软件对三维适形质子治疗(3DCPT)加补丁场与 IMPT 的治疗计划进行了比较。我们还分析了在系统设置误差为±1mm 和范围误差为±2.5mm 的情况下,这些计划的稳健性。IMPT 能够更好地保护 OAR,同时为上述具有挑战性的病例提供更好的剂量覆盖。3DCPT 和 IMPT 对设置误差和范围不确定性都很敏感,而 IMPT 的影响最大。然而,当考虑到传输不确定性时,IMPT 计划在靶区覆盖和 OAR 保护方面仍然具有优势。另一方面,当存在较大的范围误差时,某些临床目标,如 OAR 的最大剂量,更有可能无法通过 IMPT 实现。即使与相对复杂和耗时的补丁场技术相比,IMPT 也有可能改善挑战性病例的靶区覆盖和 OAR 保护。虽然 IMPT 计划往往对传输不确定性更敏感,但它们的剂量学优势仍然存在。稳健的治疗计划技术可能会进一步降低 IMPT 计划的敏感性。