Suppr超能文献

定量计算机断层成像在间质性肺疾病中的应用。

Quantitative computed tomography imaging of interstitial lung diseases.

机构信息

Department of Radiology, Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

J Thorac Imaging. 2013 Sep;28(5):298-307. doi: 10.1097/RTI.0b013e3182a21969.

Abstract

PURPOSE

High-resolution chest computed tomography (HRCT) is essential in the characterization of interstitial lung disease. The HRCT features of some diseases can be diagnostic. Longitudinal monitoring with HRCT can assess progression of interstitial lung disease; however, subtle changes in the volume and character of abnormalities can be difficult to assess. Accuracy of diagnosis can be dependent on expertise and experience of the radiologist, pathologist, or clinician. Quantitative analysis of thoracic HRCT has the potential to determine the extent of disease reproducibly, classify the types of abnormalities, and automate the diagnostic process.

MATERIALS AND METHODS

Novel software that utilizes histogram signatures to characterize pulmonary parenchyma was used to analyze chest HRCT data, including retrospective processing of clinical CT scans and research data from the Lung Tissue Research Consortium. Additional information including physiological, pathologic, and semiquantitative radiologist assessment was available to allow comparison of quantitative results, with visual estimates of the disease, physiological parameters, and measures of disease outcome.

RESULTS

Quantitative analysis results were provided in regional volumetric quantities for statistical analysis and a graphical representation. These results suggest that quantitative HRCT analysis can serve as a biomarker with physiological, pathologic, and prognostic significance.

CONCLUSIONS

It is likely that quantitative analysis of HRCT can be used in clinical practice as a means to aid in identifying a probable diagnosis, stratifying prognosis in early disease, and consistently determining progression of the disease or response to therapy. Further optimization of quantitative techniques and longitudinal analysis of well-characterized subjects would be helpful in validating these methods.

摘要

目的

高分辨率胸部计算机断层扫描(HRCT)对于间质性肺疾病的特征描述至关重要。某些疾病的 HRCT 特征具有诊断意义。HRCT 可用于纵向监测间质性肺疾病的进展,但很难评估异常体积和特征的细微变化。诊断的准确性可能取决于放射科医生、病理学家或临床医生的专业知识和经验。胸部 HRCT 的定量分析有可能能够重复确定疾病的严重程度,分类异常的类型,并实现诊断过程的自动化。

材料和方法

使用一种利用直方图特征来描述肺实质的新型软件来分析胸部 HRCT 数据,包括对临床 CT 扫描的回顾性处理以及来自肺组织研究联盟的研究数据。还提供了其他信息,包括生理、病理和半定量放射科医生评估,以允许对定量结果进行比较,对疾病的视觉估计、生理参数和疾病结果的测量。

结果

提供了用于统计分析和图形表示的区域容积定量分析结果。这些结果表明,HRCT 定量分析可以作为一种具有生理、病理和预后意义的生物标志物。

结论

HRCT 的定量分析很可能在临床实践中被用作辅助确定可能的诊断、分层早期疾病的预后以及一致确定疾病进展或治疗反应的手段。进一步优化定量技术和对特征明确的患者进行纵向分析将有助于验证这些方法。

相似文献

1
Quantitative computed tomography imaging of interstitial lung diseases.
J Thorac Imaging. 2013 Sep;28(5):298-307. doi: 10.1097/RTI.0b013e3182a21969.
3
The Impact of Iterative Reconstruction in Low-Dose Computed Tomography on the Evaluation of Diffuse Interstitial Lung Disease.
Korean J Radiol. 2016 Nov-Dec;17(6):950-960. doi: 10.3348/kjr.2016.17.6.950. Epub 2016 Oct 31.
4
Role of imaging in progressive-fibrosing interstitial lung diseases.
Eur Respir Rev. 2018 Dec 21;27(150). doi: 10.1183/16000617.0073-2018. Print 2018 Dec 31.
6
Radiological evaluation of interstitial lung disease.
Curr Opin Pulm Med. 2011 Sep;17(5):337-45. doi: 10.1097/MCP.0b013e328347c16a.
7
High-resolution CT in diagnosis of diffuse infiltrative lung disease.
Semin Ultrasound CT MR. 2005 Oct;26(5):332-47. doi: 10.1053/j.sult.2005.07.004.
8
Automated quantification of high-resolution CT scan findings in individuals at risk for pulmonary fibrosis.
Chest. 2011 Dec;140(6):1590-1597. doi: 10.1378/chest.10-2545. Epub 2011 May 26.
9
UIP diagnosed at surgical lung biopsy, 2000-2009: HRCT patterns and proposed classification system.
AJR Am J Roentgenol. 2013 May;200(5):W458-67. doi: 10.2214/AJR.12.9437.

引用本文的文献

1
A Quantitative Imaging Measure of Progressive Pulmonary Fibrosis.
Am J Respir Crit Care Med. 2025 Jul 18. doi: 10.1164/rccm.202501-0208OC.
5
Integrating Radiomics Signature into Clinical Pathway for Patients with Progressive Pulmonary Fibrosis.
Diagnostics (Basel). 2025 Jan 24;15(3):278. doi: 10.3390/diagnostics15030278.
7
Artificial Intelligence Unveils the Unseen: Mapping Novel Lung Patterns in Bronchiectasis via Texture Analysis.
Diagnostics (Basel). 2024 Dec 21;14(24):2883. doi: 10.3390/diagnostics14242883.
8
Correlation between CT-based phenotypes and serum biomarker in interstitial lung diseases.
BMC Pulm Med. 2024 Oct 19;24(1):523. doi: 10.1186/s12890-024-03344-8.
9
Quantitative chest computed tomography predicts mortality in systemic sclerosis: A longitudinal study.
PLoS One. 2024 Sep 27;19(9):e0310892. doi: 10.1371/journal.pone.0310892. eCollection 2024.
10
Evolving and Novel Applications of Artificial Intelligence in Thoracic Imaging.
Diagnostics (Basel). 2024 Jul 8;14(13):1456. doi: 10.3390/diagnostics14131456.

本文引用的文献

1
Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis.
Eur Respir J. 2014 Jan;43(1):204-12. doi: 10.1183/09031936.00071812. Epub 2013 Apr 5.
2
Interobserver variability in the CT assessment of honeycombing in the lungs.
Radiology. 2013 Mar;266(3):936-44. doi: 10.1148/radiol.12112516. Epub 2012 Dec 6.
4
Referenceless stratification of parenchymal lung abnormalities.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):223-30. doi: 10.1007/978-3-642-23626-6_28.
5
Method for minimizing observer variation for the quantitation of high-resolution computed tomographic signs of lung disease.
J Comput Assist Tomogr. 2011 Sep-Oct;35(5):596-601. doi: 10.1097/RCT.0b013e3182277d05.
7
An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management.
Am J Respir Crit Care Med. 2011 Mar 15;183(6):788-824. doi: 10.1164/rccm.2009-040GL.
8
Combined pulmonary fibrosis and emphysema syndrome in connective tissue disease.
Arthritis Rheum. 2011 Jan;63(1):295-304. doi: 10.1002/art.30077.
9
Clinical course and prediction of survival in idiopathic pulmonary fibrosis.
Am J Respir Crit Care Med. 2011 Feb 15;183(4):431-40. doi: 10.1164/rccm.201006-0894CI. Epub 2010 Oct 8.
10
Comparative performance analysis of state-of-the-art classification algorithms applied to lung tissue categorization.
J Digit Imaging. 2010 Feb;23(1):18-30. doi: 10.1007/s10278-008-9158-4. Epub 2008 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验