Suppr超能文献

建模每日开花概率:气候变化对日本樱花物候的预期影响。

Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology.

机构信息

Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road Unit 3043, Storrs, CT, 06269-3043, USA.

出版信息

Glob Chang Biol. 2014 Apr;20(4):1251-63. doi: 10.1111/gcb.12364. Epub 2014 Feb 11.

Abstract

Understanding the drivers of phenological events is vital for forecasting species' responses to climate change. We developed flexible Bayesian survival regression models to assess a 29-year, individual-level time series of flowering phenology from four taxa of Japanese cherry trees (Prunus spachiana, Prunus × yedoensis, Prunus jamasakura, and Prunus lannesiana), from the Tama Forest Cherry Preservation Garden in Hachioji, Japan. Our modeling framework used time-varying (chill and heat units) and time-invariant (slope, aspect, and elevation) factors. We found limited differences among taxa in sensitivity to chill, but earlier flowering taxa, such as P. spachiana, were more sensitive to heat than later flowering taxa, such as P. lannesiana. Using an ensemble of three downscaled regional climate models under the A1B emissions scenario, we projected shifts in flowering timing by 2100. Projections suggest that each taxa will flower about 30 days earlier on average by 2100 with 2-6 days greater uncertainty around the species mean flowering date. Dramatic shifts in the flowering times of cherry trees may have implications for economically important cultural festivals in Japan and East Asia. The survival models used here provide a mechanistic modeling approach and are broadly applicable to any time-to-event phenological data, such as plant leafing, bird arrival time, and insect emergence. The ability to explicitly quantify uncertainty, examine phenological responses on a fine time scale, and incorporate conditions leading up to an event may provide future insight into phenologically driven changes in carbon balance and ecological mismatches of plants and pollinators in natural populations and horticultural crops.

摘要

了解物候事件的驱动因素对于预测物种对气候变化的响应至关重要。我们开发了灵活的贝叶斯生存回归模型,以评估来自日本樱花树(Prunus spachiana、Prunus × yedoensis、Prunus jamasakura 和 Prunus lannesiana)四个分类群的 29 年个体水平花期物候时间序列。该序列来自日本八王子市多摩森林樱花保护区。我们的建模框架使用了时变(冷和热单位)和时不变(坡度、方位和海拔)因素。我们发现分类群之间对冷的敏感性差异有限,但花期较早的分类群,如 P. spachiana,对热的敏感性高于花期较晚的分类群,如 P. lannesiana。使用 A1B 排放情景下的三个降尺度区域气候模型集合,我们预测了 2100 年开花时间的变化。预测表明,每个分类群的平均开花时间将提前约 30 天,而物种平均开花日期的不确定性约为 2-6 天。樱花树开花时间的急剧变化可能会对日本和东亚重要的经济文化节日产生影响。这里使用的生存模型提供了一种机制建模方法,并且广泛适用于任何时间到事件的物候数据,例如植物展叶、鸟类到达时间和昆虫出现时间。明确量化不确定性、在精细时间尺度上检查物候响应以及纳入事件前的条件的能力可能会为未来了解自然种群和园艺作物中碳平衡和植物与传粉者生态不匹配的物候驱动变化提供新的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验