Suppr超能文献

意识和麻醉状态下动态脑网络的子图“骨干”分析。

Subgraph "backbone" analysis of dynamic brain networks during consciousness and anesthesia.

机构信息

Department of Physics, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do, South Korea.

出版信息

PLoS One. 2013 Aug 15;8(8):e70899. doi: 10.1371/journal.pone.0070899. eCollection 2013.

Abstract

General anesthesia significantly alters brain network connectivity. Graph-theoretical analysis has been used extensively to study static brain networks but may be limited in the study of rapidly changing brain connectivity during induction of or recovery from general anesthesia. Here we introduce a novel method to study the temporal evolution of network modules in the brain. We recorded multichannel electroencephalograms (EEG) from 18 surgical patients who underwent general anesthesia with either propofol (n = 9) or sevoflurane (n = 9). Time series data were used to reconstruct networks; each electroencephalographic channel was defined as a node and correlated activity between the channels was defined as a link. We analyzed the frequency of subgraphs in the network with a defined number of links; subgraphs with a high probability of occurrence were deemed network "backbones." We analyzed the behavior of network backbones across consciousness, anesthetic induction, anesthetic maintenance, and two points of recovery. Constitutive, variable and state-specific backbones were identified across anesthetic state transitions. Brain networks derived from neurophysiologic data can be deconstructed into network backbones that change rapidly across states of consciousness. This technique enabled a granular description of network evolution over time. The concept of network backbones may facilitate graph-theoretical analysis of dynamically changing networks.

摘要

全身麻醉显著改变大脑网络连接。图论分析已被广泛用于研究静态大脑网络,但在研究全身麻醉诱导或恢复过程中大脑连接的快速变化时可能存在局限性。在这里,我们介绍了一种研究大脑网络模块随时间演变的新方法。我们记录了 18 名接受全身麻醉的手术患者的多通道脑电图(EEG),其中 9 名患者使用丙泊酚,9 名患者使用七氟醚。时间序列数据用于重建网络;每个脑电图通道被定义为一个节点,通道之间的相关活动被定义为一个链接。我们分析了具有定义数量链接的网络中的子图的频率;出现概率高的子图被认为是网络“骨干”。我们分析了网络骨干在意识、麻醉诱导、麻醉维持和两个恢复点之间的行为。在麻醉状态转变过程中,确定了构成、可变和特定状态的骨干。可以将源自神经生理数据的大脑网络分解为在意识状态快速变化的网络骨干。这项技术实现了随时间推移的网络演变的详细描述。网络骨干的概念可能有助于对动态变化的网络进行图论分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a76/3744550/d09b631b2384/pone.0070899.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验