Chemical Sciences and Engineering Division, ‡Materials Science Division, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States.
J Am Chem Soc. 2013 Sep 25;135(38):14240-8. doi: 10.1021/ja405555h. Epub 2013 Sep 17.
The lack of an in-depth understanding of solution-phase speciation and its relationship to solid-state phase formation is a grand challenge in synthesis science. It has severely limited the ability of inorganic chemists to predict or rationalize the formation of compounds from solutions. The need to investigate mechanisms that underlie self-assembly has motivated this study of aqueous Zr-sulfate chemistry as a model system, with the goal of understanding the structures of oligomeric clusters present in solution. We used high-energy X-ray scattering (HEXS) data to quantify Zr correlations in a series of solutions as a function of sulfate concentration. The pair distribution function (PDF) from the sulfate-free sample reveals that the average oligomeric Zr moiety is larger than the tetrameric building unit, Zr4(OH)8(H2O)16, generally understood to dominate its solution speciation. At sulfate concentrations greater than 1 m (molal), bidentate sulfate is observed, a coordination not seen in Zr(SO4)2·4H2O (2), which forms upon evaporation. Also seen in solution are correlations consistent with sulfate-bridged Zr dimers and the higher-order oligomers seen in 2. At intermediate sulfate concentrations there are correlations consistent with large Zr hydroxo-/oxo-bridged clusters. Crystals of [Zr18(OH)26O20(H2O)23.2(SO4)12.7]Cl0.6·nH2O (3) precipitate from these solutions. The Raman spectrum of 3 has a peak at 1017 cm(-1) that can be used as a signature for its presence in solution. Raman studies on deuterated solutions point to the important role of sulfate in the crystallization process. These solution results emphasize the presence of well-defined prenucleation correlations on length scales of <1 nm, often considered to be within the structurally amorphous regime.
对溶液相形态和其与固态相形成关系的深入理解的缺乏是合成科学中的一个重大挑战。这严重限制了无机化学家预测或合理化从溶液中形成化合物的能力。对理解自组装背后机制的需求激发了对水合硫酸氧锆化学的研究,将其作为模型体系,目的是了解溶液中存在的低聚体簇的结构。我们使用高能 X 射线散射 (HEXS) 数据来定量研究一系列溶液中硫酸根浓度与 Zr 相关性。无硫酸盐样品的配分函数 (PDF) 表明,平均低聚 Zr 部分大于通常认为主导其溶液形态的四聚体构建单元 Zr4(OH)8(H2O)16。在硫酸盐浓度大于 1 m(摩尔)时,观察到双齿硫酸盐,这是在蒸发时形成的 Zr(SO4)2·4H2O(2)中未见的配位。在溶液中还观察到与硫酸根桥接的 Zr 二聚体和在 2 中观察到的更高阶低聚体一致的相关性。在中间硫酸盐浓度下,存在与大的 Zr 羟氧-/氧桥接簇一致的相关性。这些溶液中沉淀出 [Zr18(OH)26O20(H2O)23.2(SO4)12.7]Cl0.6·nH2O(3)的晶体。3 的拉曼光谱在 1017 cm(-1)处有一个峰,可作为其在溶液中存在的特征。氘代溶液的拉曼研究表明硫酸盐在结晶过程中的重要作用。这些溶液结果强调了在 <1nm 的长度尺度上存在明确的成核前相关性,通常被认为处于结构非晶态范围内。