Suppr超能文献

仿生纳米结构基质对神经再生的引导作用。

Guidance of neural regeneration on the biomimetic nanostructured matrix.

作者信息

Lu Yen-Pei, Yang Chih-Hui, Yeh J Andrew, Ho Fu Han, Ou Yu-Cheng, Chen Chieh Hsiao, Lin Ming-Yu, Huang Keng-Shiang

机构信息

Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan.

Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan.

出版信息

Int J Pharm. 2014 Mar 25;463(2):177-83. doi: 10.1016/j.ijpharm.2013.08.006. Epub 2013 Aug 19.

Abstract

Biomimetic materials are used for creating microsystems to control cell growth spatially and elicit specific cellular responses by combining complex biomolecules with nanostructured surfaces. Intercellular cell-to-cell and cell-to-extracellular matrix (ECM) interactions in biomimetic materials have demonstrated potential in the development of drug discovery platforms and regeneration medicine. In this study, we developed a biomimetic nanostructured matrix by using various ECM molecular layers to create a biomimetic and biocompatible environment for realizing neuronal guidance in neural regeneration medicine. Silicon-based substrates possessing nanostructures were modified using different ECM proteins and peptides to develop a biomimetic and biocompatible environment for studying neural behaviors in adhesion, proliferation, and differentiation. The substrates were flat glass, flat silicon wafers (FWs), and nanorod-structured wafers prepared using wet etching. The three substrates were then functionalized using laminin-1 peptide, PA22-2-contained active isoleucine-lysine-valine-alanine-valine (IKVAV) peptide, and poly-d-lysine (PDL), separately. When PC12 cells were cultured and differentiated on the modified substrates, the cells were able to elongate the neurites on the glass and FW, which was coated with three types of peptide. More differentiated neurons were observed on the nanorod-structured wafers coated with laminin than on those coated with IKVAV or PDL. For achieving directional guidance of neurite outgrowth, substrates exhibiting a grating pattern of nanorods were partially collapsed by the pulling force of water, leaving few nanorods, which support the net form of laminin on the surface. Furthermore, we fabricated the topological nanostructure-patterned wafer coated with laminin and successfully manipulated the extension and direction of neurites by using more than 80 μm of a single soma. This approach demonstrates potential as a facile and efficient method for guiding the direction of single axons and for enhancing neurite outgrowth in studies on nerve regenerative medicine.

摘要

仿生材料用于创建微系统,通过将复杂生物分子与纳米结构表面相结合,在空间上控制细胞生长并引发特定的细胞反应。仿生材料中的细胞间相互作用以及细胞与细胞外基质(ECM)的相互作用在药物发现平台和再生医学的发展中已显示出潜力。在本研究中,我们通过使用各种ECM分子层开发了一种仿生纳米结构基质,以创建一个仿生且生物相容的环境,用于神经再生医学中的神经导向。使用不同的ECM蛋白和肽对具有纳米结构的硅基底物进行修饰,以开发一个仿生且生物相容的环境,用于研究神经在粘附、增殖和分化方面的行为。底物包括平面玻璃、平面硅片(FWs)以及通过湿法蚀刻制备的纳米棒结构硅片。然后分别使用层粘连蛋白-1肽、含有PA22-2的活性异亮氨酸-赖氨酸-缬氨酸-丙氨酸-缬氨酸(IKVAV)肽和聚-D-赖氨酸(PDL)对这三种底物进行功能化处理。当PC12细胞在修饰后的底物上培养并分化时,细胞能够在涂有三种肽的玻璃和FW上伸长神经突。在涂有层粘连蛋白的纳米棒结构硅片上观察到的分化神经元比涂有IKVAV或PDL的更多。为了实现神经突生长的定向引导,具有纳米棒光栅图案的底物在水的拉力作用下部分塌陷,仅留下少数纳米棒,这些纳米棒支撑着表面层粘连蛋白的网状结构。此外,我们制备了涂有层粘连蛋白的拓扑纳米结构图案化硅片,并成功地通过单个胞体超过80μm来操纵神经突的延伸和方向。这种方法展示了作为一种简便有效的方法在神经再生医学研究中引导单个轴突方向和增强神经突生长的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验