Suppr超能文献

通过使用稳定同位素标记氨基酸在细胞培养中鉴定亨廷顿病-吉尔福德早衰综合征中线粒体功能障碍。

Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture.

机构信息

Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.

出版信息

J Proteomics. 2013 Oct 8;91:466-77. doi: 10.1016/j.jprot.2013.08.008. Epub 2013 Aug 20.

Abstract

UNLABELLED

Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (Lmna(G609G/G609G) knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages.

BIOLOGICAL SIGNIFICANCE

Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson-Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging.

摘要

未加说明

Hutchinson-Gilford 早老综合征(HGPS)是一种罕见的节段性过早衰老障碍,它再现了一些生理衰老的生物学和物理方面的特征。这种疾病是由 LMNA 基因的散发性显性突变引起的,导致前胶原的表达,前胶原是一种缺少 50 个氨基酸的突变体形式,并且在其羧基末端保留有毒的法呢基修饰。然而,HGPS 中细胞损伤和衰老以及加速衰老的机制尚不完全清楚。在这里,我们使用 SILAC(细胞培养中稳定同位素标记的氨基酸)分析了来自健康受试者和 HGPS 患者的成纤维细胞。我们发现 HGPS 细胞中线粒体氧化磷酸化蛋白的表达明显下调,伴随着线粒体功能障碍,这一过程被认为在正常衰老过程中会导致广泛的器官衰退。我们还发现表达前胶原(Lmna(G609G/G609G) 敲入小鼠)或 prelamin A(Zmpste24-/- 小鼠)的成纤维细胞中存在线粒体功能障碍。对这些小鼠模型组织的分析表明,这些蛋白对线粒体功能的破坏作用是时间和剂量依赖性的。在 HGPS 中似乎不受影响的组织——大脑中没有观察到线粒体改变,大脑中前胶原的表达极低。值得注意的是,在用异戊烯基化抑制剂 FTI-277 或普伐他汀加唑来膦酸治疗的成纤维细胞中,线粒体功能得到了恢复,这些药物正在 HGPS 临床试验中进行测试。我们的结果表明,线粒体功能障碍导致 HGPS 中过早的器官衰退和衰老。除了对早老症的影响外,前胶原和前胶原也可能导致正常衰老过程中的线粒体功能障碍和器官损伤,因为这些蛋白在非 HGPS 个体的细胞和组织中表达,尤其是在高龄时表达更为明显。

生物学意义

LMNA 或前胶原加工缺陷的突变导致过早衰老障碍,包括 Hutchinson-Gilford 早老综合征(HGPS)。大多数 HGPS 患者携带杂合性新生点突变(c.1824C>T:GGC>GGT;p.G608G),导致称为前胶原的突变蛋白的表达。尽管前胶原和前胶原在加速衰老中的重要性,但潜在的分子机制在很大程度上仍然未知。为了解决这个问题,我们使用定量稳定同位素标记的氨基酸在细胞培养中(SILAC)比较了 HGPS 患者和年龄匹配的对照皮肤衍生的真皮成纤维细胞的蛋白质组。我们的结果表明,几种线粒体 ATP 酶复合物的成分明显下调,同时一些糖酵解酶上调。因此,功能研究表明 HGPS 成纤维细胞中线粒体功能障碍。此外,我们使用细胞和动物模型的表达和功能研究证实,线粒体功能障碍是早老症的一个特征,它以时间和剂量依赖的方式发展。最后,我们证明了用他汀类药物和氨基双膦酸盐联合治疗成纤维细胞可以改善成纤维细胞的线粒体功能,这两种药物正在进行中的 HGPS 临床试验中进行评估。尽管需要进一步的研究来揭示前胶原和前胶原引起线粒体异常的机制,但我们的发现可能为 HGPS 的治疗方法的改进铺平道路。这些研究也可能提高我们对正常衰老过程中线粒体功能障碍机制的认识,因为在前胶原和前胶原的积累过程中都发现了正常衰老。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验