Bolz A, Schaldach M
Zentralinstitut für Biomedizinische Technik, Universitat Erlangen, F.R.G.
Artif Organs. 1990 Aug;14(4):260-9. doi: 10.1111/j.1525-1594.1990.tb02967.x.
Implants are steadily increasing in importance as substitutions for body functions. With the present state of the art, the limitations of the application of cardiovascular implants are due to insufficient performance of biomaterials. Present research in this field is being concentrated on efforts to improve the thrombus resistance of conventional materials by coating with semiconducting materials to actively influence the electrochemical interaction between the condensed matter and blood proteins. Based on an electrochemical model of the interaction of fibrinogen with an artificial surface and the resulting requirements for improving hemocompatibility, a coating of amorphous hydrogenated silicon carbide deposited by plasma-enhanced chemical vapor deposition (PECVD) is presently under evaluation as a special coating material for cardiovascular prostheses and is herein described. In particular, first results are published concerning the optimum deposition parameters in the PECVD process and cell culture tests. Experimental results of comparative partial thromboplastin time studies serve the purpose of proving the validity of the electrochemical reaction model referring the hemocompatibility of implantable materials to their semiconducting surface properties. The aim of this article is to demonstrate a feasible method for an antithrombogenic surface modification based on doped amorphous silicon carbide films that is in full conformance to the above mentioned model.
作为人体功能的替代物,植入物的重要性正在稳步增加。就目前的技术水平而言,心血管植入物应用的局限性在于生物材料性能不足。该领域目前的研究集中在通过用半导体材料涂层来提高传统材料的抗血栓性,以积极影响凝聚物质与血液蛋白质之间的电化学相互作用。基于纤维蛋白原与人工表面相互作用的电化学模型以及由此产生的改善血液相容性的要求,目前正在评估通过等离子体增强化学气相沉积(PECVD)沉积的非晶氢化碳化硅涂层作为心血管假体的特殊涂层材料,并在此进行描述。特别是,首次公布了有关PECVD工艺中最佳沉积参数和细胞培养测试的结果。比较部分凝血活酶时间研究的实验结果用于证明将可植入材料的血液相容性与其半导体表面性质相关联的电化学反应模型的有效性。本文的目的是展示一种基于掺杂非晶硅碳化膜的抗血栓表面改性的可行方法,该方法完全符合上述模型。