Control & Dynamical Systems Department, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
IEEE Trans Pattern Anal Mach Intell. 2013 Oct;35(10):2357-70. doi: 10.1109/TPAMI.2013.34.
This paper presents a new intrinsic calibration method that allows us to calibrate a generic single-view point camera just by waving it around. From the video sequence obtained while the camera undergoes random motion, we compute the pairwise time correlation of the luminance signal for a subset of the pixels. We show that if the camera undergoes a random uniform motion, then the pairwise correlation of any pixels pair is a function of the distance between the pixel directions on the visual sphere. This leads to formalizing calibration as a problem of metric embedding from nonmetric measurements: We want to find the disposition of pixels on the visual sphere from similarities that are an unknown function of the distances. This problem is a generalization of multidimensional scaling (MDS) that has so far resisted a comprehensive observability analysis (can we reconstruct a metrically accurate embedding?) and a solid generic solution (how do we do so?). We show that the observability depends both on the local geometric properties (curvature) as well as on the global topological properties (connectedness) of the target manifold. We show that, in contrast to the euclidean case, on the sphere we can recover the scale of the points distribution, therefore obtaining a metrically accurate solution from nonmetric measurements. We describe an algorithm that is robust across manifolds and can recover a metrically accurate solution when the metric information is observable. We demonstrate the performance of the algorithm for several cameras (pin-hole, fish-eye, omnidirectional), and we obtain results comparable to calibration using classical methods. Additional synthetic benchmarks show that the algorithm performs as theoretically predicted for all corner cases of the observability analysis.
本文提出了一种新的内在标定方法,只需晃动相机即可对通用单目相机进行标定。从相机经历随机运动时获得的视频序列中,我们计算了部分像素的亮度信号的两两时间相关。我们表明,如果相机经历随机均匀运动,那么任何像素对的两两相关都是像素在视觉球上的方向之间距离的函数。这导致将标定形式化为从非度量测量中进行度量嵌入的问题:我们希望从相似度中找到视觉球上像素的位置,而这些相似度是距离的未知函数。这个问题是多维尺度(MDS)的推广,到目前为止,它一直抵制全面的可观测性分析(我们能否重建一个度量准确的嵌入?)和一个可靠的通用解决方案(我们应该怎么做?)。我们表明,可观测性既取决于目标流形的局部几何性质(曲率),也取决于全局拓扑性质(连通性)。我们表明,与欧几里得情况相反,在球面上我们可以恢复点分布的比例,因此可以从非度量测量中获得度量准确的解决方案。我们描述了一种在流形之间具有鲁棒性的算法,并且可以在度量信息可观测时恢复度量准确的解决方案。我们展示了该算法对几种相机(针孔、鱼眼、全景)的性能,并且获得的结果与使用经典方法的标定结果相当。额外的合成基准表明,该算法在可观测性分析的所有角点情况下都表现出理论预测的性能。