Suppr超能文献

基于半马尔可夫条件随机场的手写中文/日文文本识别。

Handwritten Chinese/Japanese text recognition using semi-Markov conditional random fields.

机构信息

Beijing Key Lab of Human-Computer Interaction,Institute of Software, Chinese Academy of Sciences, Beijing, P.R.China.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Oct;35(10):2413-26. doi: 10.1109/TPAMI.2013.49.

Abstract

This paper proposes a method for handwritten Chinese/Japanese text (character string) recognition based on semi-Markov conditional random fields (semi-CRFs). The high-order semi-CRF model is defined on a lattice containing all possible segmentation-recognition hypotheses of a string to elegantly fuse the scores of candidate character recognition and the compatibilities of geometric and linguistic contexts by representing them in the feature functions. Based on given models of character recognition and compatibilities, the fusion parameters are optimized by minimizing the negative log-likelihood loss with a margin term on a training string sample set. A forward-backward lattice pruning algorithm is proposed to reduce the computation in training when trigram language models are used, and beam search techniques are investigated to accelerate the decoding speed. We evaluate the performance of the proposed method on unconstrained online handwritten text lines of three databases. On the test sets of databases CASIA-OLHWDB (Chinese) and TUAT Kondate (Japanese), the character level correct rates are 95.20 and 95.44 percent, and the accurate rates are 94.54 and 94.55 percent, respectively. On the test set (online handwritten texts) of ICDAR 2011 Chinese handwriting recognition competition, the proposed method outperforms the best system in competition.

摘要

本文提出了一种基于半马尔可夫条件随机场(semi-CRFs)的手写中文/日文文本(字符串)识别方法。高阶 semi-CRF 模型定义在一个包含字符串所有可能分割识别假设的格中,通过在特征函数中表示候选字符识别的得分和几何及语言上下文的兼容性,优雅地融合了它们。基于给定的字符识别模型和兼容性模型,通过在训练字符串样本集上最小化带边界项的负对数似然损失来优化融合参数。提出了一种前向-后向格剪枝算法,在使用三gram 语言模型时减少训练中的计算量,并研究了束搜索技术以加速解码速度。我们在三个数据库的无约束在线手写文本行上评估了所提出方法的性能。在 CASIA-OLHWDB(中文)和 TUAT Kondate(日文)数据库的测试集中,字符级的正确识别率分别为 95.20%和 95.44%,准确率分别为 94.54%和 94.55%。在 ICDAR 2011 中文手写识别竞赛的测试集(在线手写文本)上,所提出的方法优于竞赛中的最佳系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验