University of Geneva, F.-A. Forel Institute, Group of Environmental Physical Chemistry, 10 route de Suisse, 1290 Versoix, Switzerland.
Water Res. 2013 Oct 15;47(16):6052-63. doi: 10.1016/j.watres.2013.07.021. Epub 2013 Aug 2.
The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles.
系统研究了海藻酸钠和苏皖河腐殖酸存在时,TiO2 纳米颗粒的行为。使用动态光散射和电泳实验研究了 TiO2 纳米颗粒的聚集、解聚集和稳定化,从而可以测量 z 均流动力学直径和 zeta 电位值。通过考虑三种依赖于 pH 的静电情况,讨论了 TiO2 纳米颗粒的稳定性。在第一种情况下,当 pH 低于 TiO2 纳米颗粒的零电荷点时,纳米颗粒表面带正电荷,而海藻酸钠和苏皖河腐殖酸带负电荷。纳米颗粒表面迅速吸附,促进表面电荷中和和聚集。进一步增加海藻酸钠和苏皖河腐殖酸的浓度,可以获得 TiO2 纳米颗粒的电荷反转和稳定。在第二种静电情况下,在表面电荷中和 pH 时,TiO2 纳米颗粒迅速形成聚集体。海藻酸钠和苏皖河腐殖酸在聚集体上的吸附导致它们部分碎裂。在第三种静电情况下,当纳米颗粒、海藻酸钠和苏皖河腐殖酸带负电荷时,只有少量的苏皖河腐殖酸被吸附在 TiO2 纳米颗粒表面。结果表明,在环境化合物存在下,单个和聚集的 TiO2 纳米颗粒的命运和行为主要受静电吸引和排斥相互作用、空间和范德华相互作用以及浓度比的复杂相互作用的驱动。结果还表明,腐殖酸和生物聚合物的环境水相浓度范围极大地改变了聚集或分散的 TiO2 纳米颗粒的稳定性。