Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, China.
Nanoscale. 2013 Oct 21;5(20):9821-9. doi: 10.1039/c3nr03150k.
Developing low-temperature deNOx catalysts with high catalytic activity, SO2-tolerance and stability is highly desirable but remains challenging. Herein, by coating the mesoporous TiO2 layers on carbon nanotubes (CNTs)-supported MnOx and CeOx nanoparticles (NPs), we obtained a core-shell structural deNOx catalyst with high catalytic activity, good SO2-tolerance and enhanced stability. Transmission electron microscopy, X-ray diffraction, N2 sorption, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction and NH3 temperature-programmed desorption have been used to elucidate the structure and surface properties of the obtained catalysts. Both the specific surface area and chemisorbed oxygen species are enhanced by the coating of meso-TiO2 sheaths. The meso-TiO2 sheaths not only enhance the acid strength but also raise acid amounts. Moreover, there is a strong interaction among the manganese oxide, cerium oxide and meso-TiO2 sheaths. Based on these favorable properties, the meso-TiO2 coated catalyst exhibits a higher activity and more extensive operating-temperature window, compared to the uncoated catalyst. In addition, the meso-TiO2 sheaths can serve as an effective barrier to prevent the aggregation of metal oxide NPs during stability testing. As a result, the meso-TiO2 overcoated catalyst exhibits a much better stability than the uncoated one. More importantly, the meso-TiO2 sheaths can not only prevent the generation of ammonium sulfate species from blocking the active sites but also inhibit the formation of manganese sulfate, resulting in a higher SO2-tolerance. These results indicate that the design of a core-shell structure is effective to promote the performance of deNOx catalysts.
开发低温脱硝催化剂,使其具有高催化活性、抗 SO2 能力和稳定性,是一项极具挑战性的工作。在此,我们通过在碳纳米管(CNTs)负载的 MnOx 和 CeOx 纳米颗粒(NPs)上包覆介孔 TiO2 层,获得了一种具有高催化活性、良好的抗 SO2 能力和增强稳定性的核壳结构脱硝催化剂。透射电子显微镜、X 射线衍射、N2 吸附、X 射线光电子能谱、H2 程序升温还原和 NH3 程序升温脱附被用于阐明所获得的催化剂的结构和表面性质。介孔 TiO2 壳的包覆不仅提高了比表面积,还增加了化学吸附氧物种的数量。介孔 TiO2 壳不仅增强了酸强度,还增加了酸量。此外,MnO2、CeO2 和介孔 TiO2 壳之间存在强烈的相互作用。基于这些有利的性质,与未包覆的催化剂相比,介孔 TiO2 包覆的催化剂表现出更高的活性和更宽的操作温度窗口。此外,介孔 TiO2 壳可以作为一种有效的屏障,防止在稳定性测试过程中金属氧化物 NPs 的聚集。因此,介孔 TiO2 包覆的催化剂比未包覆的催化剂具有更好的稳定性。更重要的是,介孔 TiO2 壳不仅可以防止生成的硫酸铵物种堵塞活性位,还可以抑制硫酸锰的形成,从而提高了抗 SO2 能力。这些结果表明,核壳结构的设计可以有效地提高脱硝催化剂的性能。