Suppr超能文献

改变的骨架和侧链相互作用导致白细胞介素-1β(IL-1β)折叠过程中的途径异质性。

Altered backbone and side-chain interactions result in route heterogeneity during the folding of interleukin-1β (IL-1β).

机构信息

Department of Chemistry and Biochemistry, University of California, La Jolla, CA, USA.

出版信息

Biophys J. 2013 Aug 20;105(4):975-83. doi: 10.1016/j.bpj.2013.06.019.

Abstract

Deletion of the β-bulge trigger-loop results in both a switch in the preferred folding route, from the functional loop packing folding route to barrel closure, as well as conversion of the agonist activity of IL-1β into antagonist activity. Conversely, circular permutations of IL-1β conserve the functional folding route as well as the agonist activity. These two extremes in the folding-functional interplay beg the question of whether mutations in IL-1β would result in changes in the populations of heterogeneous folding routes and the signaling activity. A series of topologically equivalent water-mediated β-strand bridging interactions within the pseudosymmetric β-trefoil fold of IL-1β highlight the backbone water interactions that stabilize the secondary and tertiary structure of the protein. Additionally, conserved aromatic residues lining the central cavity appear to be essential for both stability and folding. Here, we probe these protein backbone-water molecule and side chain-side chain interactions and the role they play in the folding mechanism of this geometrically stressed molecule. We used folding simulations with structure-based models, as well as a series of folding kinetic experiments to examine the effects of the F42W core mutation on the folding landscape of IL-1β. This mutation alters water-mediated backbone interactions essential for maintaining the trefoil fold. Our results clearly indicate that this perturbation in the primary structure alters a structural water interaction and consequently modulates the population of folding routes accessed during folding and signaling activity.

摘要

β-突环缺失不仅会改变首选折叠途径,使功能环包装折叠途径转向桶状结构关闭,还会使 IL-1β 的激动剂活性转变为拮抗剂活性。相反,IL-1β 的环状置换保留了功能折叠途径和激动剂活性。在折叠-功能相互作用的这两个极端情况下,人们不禁要问,IL-1β 的突变是否会导致不同折叠途径的群体和信号转导活性发生变化。在 IL-1β 的伪对称β-三叶折叠中,一系列拓扑等价的水介导β-链桥接相互作用突出了稳定蛋白质二级和三级结构的骨架水分子相互作用。此外,排列在中央腔中的保守芳香族残基似乎对稳定性和折叠都至关重要。在这里,我们研究了这些蛋白质骨架-水分子和侧链-侧链相互作用,以及它们在这个几何上受到压力的分子折叠机制中所起的作用。我们使用基于结构的模型进行折叠模拟,以及一系列折叠动力学实验,研究了 F42W 核心突变对 IL-1β 折叠景观的影响。该突变改变了维持三叶折叠所必需的水介导骨架相互作用。我们的结果清楚地表明,这种一级结构的干扰改变了一个结构水分子相互作用,从而调节了折叠和信号转导活性过程中折叠途径的群体。

相似文献

2
Folding circular permutants of IL-1β: route selection driven by functional frustration.
PLoS One. 2012;7(6):e38512. doi: 10.1371/journal.pone.0038512. Epub 2012 Jun 5.
3
Backtracking on the folding landscape of the beta-trefoil protein interleukin-1beta?
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14844-8. doi: 10.1073/pnas.0807812105. Epub 2008 Sep 19.
4
β-Bulge triggers route-switching on the functional landscape of interleukin-1β.
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1490-3. doi: 10.1073/pnas.1114430109. Epub 2012 Jan 17.
5
Structural Perturbations Present in the Folding Cores of Interleukin-33 and Interleukin-1β Correlate to Differences in Their Function.
J Phys Chem B. 2015 Aug 27;119(34):11203-14. doi: 10.1021/acs.jpcb.5b03111. Epub 2015 Jun 23.
6
Extracting function from a beta-trefoil folding motif.
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10384-9. doi: 10.1073/pnas.0801343105. Epub 2008 Jul 23.
8
Case study of hydrogen bonding in a hydrophobic cavity.
J Phys Chem B. 2014 Dec 18;118(50):14602-11. doi: 10.1021/jp5097053. Epub 2014 Dec 3.

引用本文的文献

1
Role of Non-Binding T63 Alteration in IL-18 Binding.
Int J Mol Sci. 2024 Dec 3;25(23):12992. doi: 10.3390/ijms252312992.
2
Heterogeneous side chain conformation highlights a network of interactions implicated in hysteresis of the knotted protein, minimal tied trefoil.
J Phys Condens Matter. 2015 Sep 9;27(35):354108. doi: 10.1088/0953-8984/27/35/354108. Epub 2015 Aug 20.
3
Allosteric switching of agonist/antagonist activity by a single point mutation in the interluekin-1 receptor antagonist, IL-1Ra.
J Mol Biol. 2013 Jul 10;425(13):2382-92. doi: 10.1016/j.jmb.2013.03.016. Epub 2013 Mar 15.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Understanding the folding-function tradeoff in proteins.
PLoS One. 2013 Apr 12;8(4):e61222. doi: 10.1371/journal.pone.0061222. Print 2013.
3
Folding circular permutants of IL-1β: route selection driven by functional frustration.
PLoS One. 2012;7(6):e38512. doi: 10.1371/journal.pone.0038512. Epub 2012 Jun 5.
4
β-Bulge triggers route-switching on the functional landscape of interleukin-1β.
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1490-3. doi: 10.1073/pnas.1114430109. Epub 2012 Jan 17.
5
SMOG@ctbp: simplified deployment of structure-based models in GROMACS.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W657-61. doi: 10.1093/nar/gkq498. Epub 2010 Jun 4.
6
3V: cavity, channel and cleft volume calculator and extractor.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W555-62. doi: 10.1093/nar/gkq395. Epub 2010 May 16.
7
The origin of allosteric functional modulation: multiple pre-existing pathways.
Structure. 2009 Aug 12;17(8):1042-50. doi: 10.1016/j.str.2009.06.008.
9
Backtracking on the folding landscape of the beta-trefoil protein interleukin-1beta?
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14844-8. doi: 10.1073/pnas.0807812105. Epub 2008 Sep 19.
10
Structural and thermodynamic effects of ANS binding to human interleukin-1 receptor antagonist.
Protein Sci. 2008 Apr;17(4):652-63. doi: 10.1110/ps.073332408. Epub 2008 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验