State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
Anal Chim Acta. 2013 Sep 10;794:67-75. doi: 10.1016/j.aca.2013.07.034. Epub 2013 Jul 17.
The lack of authentic standards represents a major bottleneck in the quantitative analysis of complex samples. Here we propose a quantitative structure and ionization intensity relationship (QSIIR) approach to predict the absolute levels of compounds in complex matrixes. An absolute quantitative method for simultaneous quantification of 25 organic acids was firstly developed and validated. Napierian logarithm (LN) of the relative slope rate derived from the calibration curves was applied as an indicator of the relative ionization intensity factor (RIIF) and serves as the dependent variable for building a QSIIR model via a multiple linear regression (MLR) approach. Five independent variables representing for hydrogen bond acidity, HOMO energy, the number of hydrogen bond donating group, the ratio of organic phase, and the polar solvent accessible surface area were found as the dominant contributors to the RIIF of organic acids. This QSIIR model was validated to be accurate and robust, with the correlation coefficients (R(2)), R(2) adjusted, and R(2) prediction at 0.945, 0.925, and 0.89, respectively. The deviation of accuracy between the predicted and experimental value in analyzing a real complex sample was less than 20% in most cases (15/18). Furthermore, the high adaptability of this model was validated one year later in another LC/MS system. The QSIIR approach is expected to provide better understanding of quantitative structure and ionization efficiency relationship of analogous compounds, and also to be useful in predicting the absolute levels of analogous analytes in complex mixtures.
缺乏真实标准是复杂样品定量分析的主要瓶颈。在这里,我们提出了一种定量结构与离子化强度关系(QSIIR)方法,用于预测复杂基质中化合物的绝对水平。我们首次建立并验证了一种用于同时定量 25 种有机酸的绝对定量方法。校准曲线的相对斜率率的自然对数(LN)被用作相对离子化强度因子(RIIF)的指标,并作为通过多元线性回归(MLR)方法建立 QSIIR 模型的因变量。五个独立变量代表氢键酸度、HOMO 能量、氢键供体基团的数量、有机相的比例和极性溶剂可及表面积,被发现是有机酸 RIIF 的主要贡献者。该 QSIIR 模型被验证为准确和稳健,相关系数(R²)、调整后的 R² 和预测的 R² 分别为 0.945、0.925 和 0.89。在分析实际复杂样品时,预测值与实验值的准确性偏差在大多数情况下(15/18)小于 20%。此外,该模型的高适应性在一年后另一个 LC/MS 系统中得到了验证。QSIIR 方法有望更好地理解类似化合物的定量结构与离子化效率关系,也有助于预测复杂混合物中类似分析物的绝对水平。