Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
J Photochem Photobiol B. 2013 Oct 5;127:100-7. doi: 10.1016/j.jphotobiol.2013.07.019. Epub 2013 Aug 1.
The interaction of quercetin with β-casein nanoparticle micelle was studied at various temperatures in order to do a complete thermodynamic and molecular analysis on the binding process. The results of fluorescence studies showed the possibility of fluorescence energy transfer between excited tryptophan and quercetin. The determined values of critical transfers distance and the mean distance of ligand from Trp-143 residues in β-casein micelle represents a non-radiative energy transfer mechanism for quenching and the existence of a significant interaction between this flavonoid and β-casein nanoparticle. The equilibrium binding of quercetin with β-casein micelle at different temperatures was studied by using UV-Vis absorption spectroscopy. The chemometric analysis (principal component analysis (PCA) and multivariate curve resolution-alternating least squares (MCR-ALS) methods) on spectrophotometric data revealed the existence of two components in solution (quercetin and β-casein-quercetin complex) and resolved their pure concentration and spectral profiles. This information let us to calculate the equilibrium binding constant at various temperatures and the relevant thermodynamic parameters of interaction (enthalpy, entropy and Gibbs free energy) with low uncertainty. The negative values of entropy and enthalpy changes represent the predominate role of hydrogen binding and van der Waals interactions in the binding process. Docking calculations showed the probable binding site of quercetin is located in the hydrophobic core of β-casein where the quercetin molecule is lined by hydrophobic residues and make five hydrogen bonds and several van der Waals contacts with them. Moreover, molecular dynamic (MD) simulation results suggested that this flavonoid can interact with β-casein, without affecting the secondary structure of β-casein. Simulations, molecular docking and experimental data reciprocally supported each other.
为了对结合过程进行完整的热力学和分子分析,研究了槲皮素与β-酪蛋白纳米颗粒胶束在不同温度下的相互作用。荧光研究的结果表明,在激发色氨酸和槲皮素之间存在荧光能量转移的可能性。确定的临界转移距离值和β-酪蛋白胶束中色氨酸残基 Trp-143 处配体的平均距离表示非辐射能量转移机制,用于猝灭并且这种黄酮类化合物和β-酪蛋白纳米颗粒之间存在显著相互作用。通过使用紫外可见吸收光谱研究了在不同温度下槲皮素与β-酪蛋白胶束的平衡结合。化学计量学分析(主成分分析(PCA)和多元曲线分辨交替最小二乘法(MCR-ALS)方法)对分光光度数据的分析表明,溶液中存在两种组分(槲皮素和β-酪蛋白-槲皮素复合物),并解析了它们的纯浓度和光谱轮廓。这些信息使我们能够在各种温度下计算平衡结合常数以及相互作用的相关热力学参数(焓,熵和吉布斯自由能),具有较低的不确定性。熵和焓变化的负值表示氢键和范德华相互作用在结合过程中占主导地位。对接计算表明,槲皮素的可能结合位点位于β-酪蛋白的疏水区,其中槲皮素分子由疏水性残基排列,并与它们形成五个氢键和几个范德华接触。此外,分子动力学(MD)模拟结果表明,这种类黄酮可以与β-酪蛋白相互作用,而不会影响β-酪蛋白的二级结构。模拟,分子对接和实验数据相互支持。
Spectrochim Acta A Mol Biomol Spectrosc. 2013-7-1
J Biomol Struct Dyn. 2017-6-7
Spectrochim Acta A Mol Biomol Spectrosc. 2013-10-8
J Phys Chem B. 2013-1-23