文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

槲皮素:一种潜在的多动态药物。

Quercetin: A Potential Polydynamic Drug.

机构信息

Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.

Laboratory of Organic Chemistry and Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece.

出版信息

Molecules. 2023 Dec 17;28(24):8141. doi: 10.3390/molecules28248141.


DOI:10.3390/molecules28248141
PMID:38138630
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10745404/
Abstract

The study of natural products as potential drug leads has gained tremendous research interest. Quercetin is one of those natural products. It belongs to the family of flavonoids and, more specifically, flavonols. This review summarizes the beneficial pharmaceutical effects of quercetin, such as its anti-cancer, anti-inflammatory, and antimicrobial properties, which are some of the quercetin effects described in this review. Nevertheless, quercetin shows poor bioavailability and low solubility. For this reason, its encapsulation in macromolecules increases its bioavailability and therefore pharmaceutical efficiency. In this review, a brief description of the different forms of encapsulation of quercetin are described, and new ones are proposed. The beneficial effects of applying new pharmaceutical forms of nanotechnology are outlined.

摘要

天然产物作为潜在药物先导的研究引起了极大的研究兴趣。槲皮素就是其中一种天然产物。它属于类黄酮家族,更具体地说,属于黄酮醇。本综述总结了槲皮素的有益的药物作用,如抗癌、抗炎和抗菌特性,这些都是本综述中描述的槲皮素的一些作用。然而,槲皮素的生物利用度差,溶解度低。因此,将其包裹在大分子中可以提高其生物利用度和药物效率。在本综述中,简要描述了槲皮素的不同包封形式,并提出了新的包封形式。概述了应用纳米技术新药物形式的有益效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/0726556d422d/molecules-28-08141-sch012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/90673bb2b7a8/molecules-28-08141-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/2f34420a9dbc/molecules-28-08141-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/d209457e37b7/molecules-28-08141-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/e15c3cf50830/molecules-28-08141-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/aeb287a4732c/molecules-28-08141-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/bbbe3eb160d1/molecules-28-08141-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/ee238d8e3af4/molecules-28-08141-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/44f3fe3d694d/molecules-28-08141-sch008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/f0db6a3a50d9/molecules-28-08141-sch009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/ab5a8ed5a97b/molecules-28-08141-sch010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/490f465452ba/molecules-28-08141-sch011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/0726556d422d/molecules-28-08141-sch012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/90673bb2b7a8/molecules-28-08141-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/2f34420a9dbc/molecules-28-08141-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/d209457e37b7/molecules-28-08141-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/e15c3cf50830/molecules-28-08141-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/aeb287a4732c/molecules-28-08141-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/bbbe3eb160d1/molecules-28-08141-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/ee238d8e3af4/molecules-28-08141-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/44f3fe3d694d/molecules-28-08141-sch008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/f0db6a3a50d9/molecules-28-08141-sch009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/ab5a8ed5a97b/molecules-28-08141-sch010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/490f465452ba/molecules-28-08141-sch011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e33f/10745404/0726556d422d/molecules-28-08141-sch012.jpg

相似文献

[1]
Quercetin: A Potential Polydynamic Drug.

Molecules. 2023-12-17

[2]
The role of quercetin, flavonols and flavones in modulating inflammatory cell function.

Inflamm Allergy Drug Targets. 2010-9

[3]
Potential Therapeutic Anti-Inflammatory and Immunomodulatory Effects of Dihydroflavones, Flavones, and Flavonols.

Molecules. 2020-2-24

[4]
A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities.

Crit Rev Food Sci Nutr. 2019-11-4

[5]
Bioavailability and health effects of dietary flavonols in man.

Arch Toxicol Suppl. 1998

[6]
Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin: lack of association between antioxidant and lipoxygenase inhibitory activity.

Biochem Pharmacol. 2008-3-1

[7]
Flavonoids bridging the gut and the brain: Intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration.

Biochem Pharmacol. 2022-11

[8]
Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds.

Oxid Med Cell Longev. 2022

[9]
Flavonols modulate the effector functions of healthy individuals' immune complex-stimulated neutrophils: a therapeutic perspective for rheumatoid arthritis.

Int Immunopharmacol. 2014-7

[10]
Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential.

Biomolecules. 2019-5-6

引用本文的文献

[1]
Tannic acid-mediated reconfiguration of oat globulin fibril-based hydrogels for quercetin encapsulation: construction, mechanism and performance.

Food Chem X. 2025-8-19

[2]
Flavonoid Quercetin Enhances Nuclear factor erythroid 2-related factor 2 (Nrf2) Pathway Activation and Reduces Inflammatory Cytokines in Asthmatic Airway Epithelial cells.

Int Arch Allergy Immunol. 2025-8-22

[3]
Quercetin promotes angiogenesis and protects the blood-spinal cord barrier structure after spinal cord injury by targeting the PI3K/Akt signaling pathway.

J Transl Med. 2025-8-25

[4]
Which Approach to Choose to Counteract Musculoskeletal Aging? A Comprehensive Review on the Multiple Effects of Exercise.

Int J Mol Sci. 2025-8-5

[5]
Quercetin: A Natural Ally in Combating Breast Cancer.

Int J Nanomedicine. 2025-7-19

[6]
Functional and Therapeutic Roles of Plant-Derived Antioxidants in Type 2 Diabetes Mellitus: Mechanisms, Challenges, and Considerations for Special Populations.

Antioxidants (Basel). 2025-6-13

[7]
Therapeutic Potential of Flavonoids and Flavonoid-Rich Compounds in Irritable Bowel Syndrome.

Drug Des Devel Ther. 2025-6-6

[8]
Integrated metabolome-transcriptome analyses reveal key pathways regulating staminate catkin development and pollen maturation in .

Front Plant Sci. 2025-5-21

[9]
Updated Review on Natural Polyphenols: Molecular Mechanisms, Biological Effects, and Clinical Applications for Cancer Management.

Biomolecules. 2025-4-28

[10]
Quercetin as a therapeutic agent for acute pancreatitis: a comprehensive review of antioxidant, anti-inflammatory, and immunomodulatory mechanisms.

Front Pharmacol. 2025-4-28

本文引用的文献

[1]
Exploring the Binding Effects of Natural Products and Antihypertensive Drugs on SARS-CoV-2: An In Silico Investigation of Main Protease and Spike Protein.

Int J Mol Sci. 2023-11-2

[2]
Analytical Methods for the Determination of Quercetin and Quercetin Glycosides in Pharmaceuticals and Biological Samples.

Crit Rev Anal Chem. 2025

[3]
Quercetin and 5-Fu Loaded Chitosan Nanoparticles Trigger Cell-Cycle Arrest and Induce Apoptosis in HCT116 Cells via Modulation of the p53/p21 Axis.

ACS Omega. 2023-9-28

[4]
Comparative Serum and Brain Pharmacokinetics of Quercetin after Oral and Nasal Administration to Rats as Lyophilized Complexes with β-Cyclodextrin Derivatives and Their Blends with Mannitol/Lecithin Microparticles.

Pharmaceutics. 2023-7-28

[5]
Recombinant Soybean Lipoxygenase 2 (GmLOX2) Acts Primarily as a ω6()-Lipoxygenase.

Curr Issues Mol Biol. 2023-7-28

[6]
Thiocarbohydrazone and Chalcone-Derived 3,4-Dihydropyrimidinethione as Lipid Peroxidation and Soybean Lipoxygenase Inhibitors.

ACS Omega. 2023-3-21

[7]
Quantification of the Quercetin Nanoemulsion Technique Using Various Parameters.

Molecules. 2023-3-10

[8]
Molecular dynamics simulation and pharmacokinetics studies of ombuin and quercetin against human pancreatic α-amylase.

J Biomol Struct Dyn. 2023-12

[9]
Pharmacological Activity of Quercetin: An Updated Review.

Evid Based Complement Alternat Med. 2022-12-1

[10]
5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy.

Eur J Med Chem. 2023-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索