The Intervention Centre, Oslo University Hospital, Oslo, Norway,
Int J Comput Assist Radiol Surg. 2014 Mar;9(2):313-22. doi: 10.1007/s11548-013-0933-4. Epub 2013 Aug 23.
This paper presents and evaluates stochastic computer algorithms used to automatically detect and track marked catheter tip during MR-guided catheterization. The algorithms developed employ extraction and matching of regional features of the catheter tip to perform the localization.
To perform the tracking, a probability map that indicates the possible locations of the catheter tip in the MR images is first generated. This map is generated from the similarity to a given marker template. The method to assess the similarity between the marker template image and the different positions on each MR frame is based on speeded-up robust features extracted from the gradient image. The probability map is then used in two different stochastic localization frameworks mean shift (MS) localization and Kalman filter (KF) to track the position of the catheter using pairs of orthogonal projection of 2D MR images. The algorithm developed was tested on catheter tip marked with LC resonant circuit (of size 2 mm x 2 cm) tuned to the Larmor frequency of the MRI scanner and for different image resolutions (1, 3, 5 and 7 mm squared pixel).
The tracking performance was very robust for the two algorithms MS and KF with image resolution as low as 3 mm where the localization error was about 1 mm for KF and 0.9 mm for MS. For the 5-mm resolution images, the error was 2.2 mm for both KF and MS, and for the 7-mm resolution images, the error was 3.6 and 3.7 mm for KF and MS, respectively.
Both KF and MS gave comparable results when it comes to accuracy for the different image resolutions. The results showed that the two tracking algorithms tracked the catheter tip with high robustness for image resolution of 3 mm and with acceptable reliability for image resolution as poor as 5 mm with the resonant marker configuration used.
本研究提出并评估了用于在磁共振(MR)引导下导管插入术中自动检测和跟踪标记导管尖端的随机计算机算法。所开发的算法采用提取和匹配导管尖端的局部特征来执行定位。
为了进行跟踪,首先生成一个概率图,该概率图指示 MR 图像中导管尖端的可能位置。该图是根据与给定标记模板的相似性生成的。评估标记模板图像与每个 MR 帧上的不同位置之间相似性的方法基于从梯度图像中提取的加速稳健特征。然后,使用概率图在两个不同的随机定位框架(均值漂移(MS)定位和卡尔曼滤波器(KF))中,使用 2D MR 图像的两对正交投影来跟踪导管的位置。开发的算法已针对调谐到 MRI 扫描仪的拉莫尔频率的 LC 共振电路(大小为 2mm x 2cm)标记的导管尖端进行了测试,并针对不同的图像分辨率(1、3、5 和 7mm 平方像素)进行了测试。
对于 MS 和 KF 这两种算法,跟踪性能非常稳健,图像分辨率低至 3mm 时,KF 的定位误差约为 1mm,MS 为 0.9mm。对于 5mm 分辨率的图像,KF 和 MS 的误差均为 2.2mm,对于 7mm 分辨率的图像,KF 和 MS 的误差分别为 3.6mm 和 3.7mm。
对于不同的图像分辨率,KF 和 MS 在准确性方面都给出了相当的结果。结果表明,对于所使用的共振标记配置,这两种跟踪算法在 3mm 图像分辨率下具有高度的鲁棒性,在 5mm 图像分辨率下具有可接受的可靠性。