Suppr超能文献

自闭症电生理数据收集、分析及报告的指南与最佳实践

Guidelines and best practices for electrophysiological data collection, analysis and reporting in autism.

作者信息

Webb Sara Jane, Bernier Raphael, Henderson Heather A, Johnson Mark H, Jones Emily J H, Lerner Matthew D, McPartland James C, Nelson Charles A, Rojas Donald C, Townsend Jeanne, Westerfield Marissa

机构信息

Department of Psychiatry and Behavioral Sciences, University of Washington, M/S CW8-6, SCRI Po Box 5371, Seattle, WA, 98145, USA,

出版信息

J Autism Dev Disord. 2015 Feb;45(2):425-43. doi: 10.1007/s10803-013-1916-6.

Abstract

The EEG reflects the activation of large populations of neurons that act in synchrony and propagate to the scalp surface. This activity reflects both the brain's background electrical activity and when the brain is being challenged by a task. Despite strong theoretical and methodological arguments for the use of EEG in understanding the neural correlates of autism, the practice of collecting, processing and evaluating EEG data is complex. Scientists should take into consideration both the nature of development in autism given the life-long, pervasive course of the disorder and the disability of altered or atypical social, communicative, and motor behaviors, all of which require accommodations to traditional EEG environments and paradigms. This paper presents guidelines for the recording, analyzing, and interpreting of EEG data with participants with autism. The goal is to articulate a set of scientific standards as well as methodological considerations that will increase the general field's understanding of EEG methods, provide support for collaborative projects, and contribute to the evaluation of results and conclusions.

摘要

脑电图(EEG)反映了大量同步活动并传播至头皮表面的神经元的激活情况。这种活动既反映了大脑的背景电活动,也反映了大脑在面对任务挑战时的状态。尽管有强有力的理论和方法学依据支持使用脑电图来理解自闭症的神经关联,但收集、处理和评估脑电图数据的实践过程很复杂。鉴于自闭症是一种终身性、广泛性的疾病,且存在社交、沟通和运动行为改变或异常的残疾情况,科学家们在考虑自闭症的发展本质时,所有这些都需要对传统脑电图环境和范式进行调整。本文提出了针对自闭症患者脑电图数据记录、分析和解读的指导方针。目标是阐明一套科学标准以及方法学考量,这将增进该领域对脑电图方法的总体理解,为合作项目提供支持,并有助于对结果和结论进行评估。

相似文献

1
Guidelines and best practices for electrophysiological data collection, analysis and reporting in autism.
J Autism Dev Disord. 2015 Feb;45(2):425-43. doi: 10.1007/s10803-013-1916-6.
4
Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism.
Med Hypotheses. 2012 Dec;79(6):790-8. doi: 10.1016/j.mehy.2012.08.031. Epub 2012 Sep 20.
5
EEG Biomarkers for Autism: Rational, Support, and the Qualification Process.
Adv Neurobiol. 2024;40:545-576. doi: 10.1007/978-3-031-69491-2_19.
6
Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study.
Comput Methods Programs Biomed. 2017 Apr;142:73-79. doi: 10.1016/j.cmpb.2017.02.002. Epub 2017 Feb 20.
8
Modeling intra-individual inter-trial EEG response variability in autism.
Stat Med. 2024 Jul 30;43(17):3239-3263. doi: 10.1002/sim.10131. Epub 2024 Jun 1.
9
Autism, spectrum or clusters? An EEG coherence study.
BMC Neurol. 2019 Feb 14;19(1):27. doi: 10.1186/s12883-019-1254-1.
10
Investigating neural dynamics in autism spectrum conditions outside of the laboratory using mobile electroencephalography.
Psychophysiology. 2022 Apr;59(4):e13995. doi: 10.1111/psyp.13995. Epub 2022 Jan 4.

引用本文的文献

3
The development of semantic integration in bilingual toddlers measured by N400.
Dev Cogn Neurosci. 2025 Jul 23;75:101599. doi: 10.1016/j.dcn.2025.101599.
5
The GREENBEAN checklist for reporting studies evaluating the effectiveness of EEG-based biomarkers.
Clin Neurophysiol. 2025 Jun 6;176:2110777. doi: 10.1016/j.clinph.2025.2110777.
6
Remote EEG acquisition in Angelman syndrome using PANDABox-EEG.
J Neurodev Disord. 2025 May 24;17(1):29. doi: 10.1186/s11689-025-09611-x.
7
Remote EEG Acquisition in Angelman Syndrome using PANDABox-EEG.
Res Sq. 2025 Apr 3:rs.3.rs-5112015. doi: 10.21203/rs.3.rs-5112015/v1.
8
Individuals with high autistic traits exhibit altered interhemispheric brain functional connectivity patterns.
Cogn Neurodyn. 2025 Dec;19(1):9. doi: 10.1007/s11571-024-10213-x. Epub 2025 Jan 9.
9
It's all in the timing: delayed feedback in autism may weaken predictive mechanisms during contour integration.
J Neurophysiol. 2024 Sep 1;132(3):628-642. doi: 10.1152/jn.00058.2024. Epub 2024 Jul 3.

本文引用的文献

1
How anatomical asymmetry of human auditory cortex can lead to a rightward bias in auditory evoked fields.
Neuroimage. 2013 Jul 1;74:22-9. doi: 10.1016/j.neuroimage.2013.02.002. Epub 2013 Feb 13.
2
Multimodal emotion processing in autism spectrum disorders: an event-related potential study.
Dev Cogn Neurosci. 2013 Jan;3:11-21. doi: 10.1016/j.dcn.2012.08.005. Epub 2012 Sep 1.
3
Mechanisms of change in psychosocial interventions for autism spectrum disorders.
Dialogues Clin Neurosci. 2012 Sep;14(3):307-18. doi: 10.31887/DCNS.2012.14.3/mlerner.
4
Can EEG characteristics predict development of epilepsy in autistic children?
Eur J Paediatr Neurol. 2013 May;17(3):232-7. doi: 10.1016/j.ejpn.2012.10.002. Epub 2012 Oct 31.
5
Early behavioral intervention is associated with normalized brain activity in young children with autism.
J Am Acad Child Adolesc Psychiatry. 2012 Nov;51(11):1150-9. doi: 10.1016/j.jaac.2012.08.018.
6
Good practice for conducting and reporting MEG research.
Neuroimage. 2013 Jan 15;65:349-63. doi: 10.1016/j.neuroimage.2012.10.001. Epub 2012 Oct 6.
8
Unreliable evoked responses in autism.
Neuron. 2012 Sep 20;75(6):981-91. doi: 10.1016/j.neuron.2012.07.026.
9
Sleep in children with autism spectrum disorder.
Pediatr Neurol. 2012 Oct;47(4):242-51. doi: 10.1016/j.pediatrneurol.2012.05.007.
10
Preserved reward outcome processing in ASD as revealed by event-related potentials.
J Neurodev Disord. 2012 May 31;4(1):16. doi: 10.1186/1866-1955-4-16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验