Department of Electrical and Electronics Engineering, Ege University, 35100 Bornova, Izmir, Turkey.
ISA Trans. 2013 Nov;52(6):795-806. doi: 10.1016/j.isatra.2013.07.005. Epub 2013 Aug 24.
A novel procedure for integrating neural networks (NNs) with conventional techniques is proposed to design industrial modeling and control systems for nonlinear unknown systems. In the proposed approach, a new recurrent NN with a special architecture is constructed to obtain discrete-time state-space representations of nonlinear dynamical systems. It is referred as the discrete state-space neural network (DSSNN). In the DSSNN, the outputs of the hidden layer neurons of the DSSNN represent the system's (pseudo) state. The inputs are fed to output neurons and the delayed outputs of the hidden layer neurons are fed to their inputs via adjustable weights. The discrete state space model of the actual system is directly obtained by training the DSSNN with the input-output data. A training procedure based on the back-propagation through time (BPTT) algorithm is developed. The Levenberg-Marquardt (LM) method with a trust region approach is used to update the DSSNN weights. Linear state space models enable to use well developed conventional analysis and design techniques. Thus, building a linear model of a system has primary importance in industrial applications. Thus, a suitable linearization procedure is proposed to derive the linear state space model from the nonlinear DSSNN representation. The controllability, observability and stability properties are examined. The state feedback controllers are designed with both the linear quadratic regulator (LQR) and the pole placement techniques. The regulator and servo control problems are both addressed. A full order observer is also designed to estimate the state variables. The performance of the proposed procedure is demonstrated by applying for both single-input single-output (SISO) and multiple-input multiple-output (MIMO) nonlinear control problems.
提出了一种将神经网络 (NN) 与传统技术集成的新方法,用于设计非线性未知系统的工业建模和控制系统。在所提出的方法中,构建了一种具有特殊结构的新型递归神经网络,以获得非线性动力系统的离散时间状态空间表示。它被称为离散状态空间神经网络 (DSSNN)。在 DSSNN 中,DSSNN 隐藏层神经元的输出表示系统的(伪)状态。输入被馈送到输出神经元,并且隐藏层神经元的延迟输出通过可调权重被馈送到它们的输入。通过使用输入-输出数据训练 DSSNN,直接获得实际系统的离散状态空间模型。开发了基于时间反向传播 (BPTT) 算法的训练过程。使用具有信任区域方法的 Levenberg-Marquardt (LM) 方法来更新 DSSNN 权重。线性状态空间模型能够使用成熟的传统分析和设计技术。因此,在工业应用中,构建系统的线性模型具有主要重要性。因此,提出了一种合适的线性化方法,从非线性 DSSNN 表示中推导出线性状态空间模型。检查可控性、可观性和稳定性特性。使用线性二次调节器 (LQR) 和极点配置技术设计状态反馈控制器。解决了调节器和伺服控制问题。还设计了全阶观测器来估计状态变量。通过将该方法应用于单输入单输出 (SISO) 和多输入多输出 (MIMO) 非线性控制问题来证明所提出的方法的性能。