Suppr超能文献

CT 图像中完全和部分扫描脊柱的自动标记和标注。

Automated landmarking and labeling of fully and partially scanned spinal columns in CT images.

机构信息

VRVis Center for Virtual Reality and Visualization, Donau-City-Strasse 1, A-1220 Vienna, Austria.

出版信息

Med Image Anal. 2013 Dec;17(8):1151-63. doi: 10.1016/j.media.2013.07.005. Epub 2013 Aug 2.

Abstract

The spinal column is one of the most distinguishable structures in CT scans of the superior part of the human body. It is not necessary to segment the spinal column in order to use it as a frame of reference. It is sufficient to place landmarks and the appropriate anatomical labels at intervertebral disks and vertebrae. In this paper, we present an automated system for landmarking and labeling spinal columns in 3D CT datasets. We designed this framework with two goals in mind. First, we relaxed input data requirements found in the literature, and we label both full and partial spine scans. Secondly, we intended to fulfill the performance requirement for daily clinical use and developed a high throughput system capable of processing thousands of slices in just a few minutes. To accomplish the aforementioned goals, we encoded structural knowledge from training data in probabilistic boosting trees and used it to detect efficiently the spinal canal, intervertebral disks, and three reference regions responsible for initializing the landmarking and labeling. Final landmarks and labels are selected by Markov Random Field-based matches of newly introduced 3-disk models. The framework has been tested on 36 CT images having at least one of the regions around the thoracic first ribs, the thoracic twelfth ribs, or the sacrum. In an average time of 2 min, we achieved a correct labeling in 35 cases with precision of 99.0% and recall of 97.2%. Additionally, we present results assuming none of the three reference regions could be detected.

摘要

脊柱是人体上半部分 CT 扫描中最具辨识度的结构之一。为了将其用作参考框架,无需对脊柱进行分割。只需在椎间盘和椎骨上放置地标和适当的解剖标签即可。在本文中,我们提出了一种用于在 3D CT 数据集中标记和标记脊柱的自动化系统。我们设计了这个框架,有两个目标。首先,我们放宽了文献中发现的输入数据要求,并对完整和部分脊柱扫描进行了标记。其次,我们旨在满足日常临床使用的性能要求,并开发了一种能够在短短几分钟内处理数千个切片的高吞吐量系统。为了实现上述目标,我们在概率提升树中编码了来自训练数据的结构知识,并使用它来有效地检测椎管、椎间盘和三个负责初始化标记和标记的参考区域。最终的地标和标签是通过新引入的 3 磁盘模型的基于马尔可夫随机场的匹配来选择的。该框架已在至少一个胸第一肋骨、胸第十二肋骨或骶骨周围区域的 36 张 CT 图像上进行了测试。平均时间为 2 分钟,我们在 35 个案例中实现了 99.0%的精确标记和 97.2%的召回率。此外,我们还提出了假设无法检测到三个参考区域中的任何一个的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验