Dosch Mark, Hayashi Kei, Garcia Tanya C, Weeren Robert, Stover Susan M
Chesapeake Veterinary Surgical Specialists, Annapolis, MD.
Vet Surg. 2013 Oct;42(7):867-76. doi: 10.1111/j.1532-950X.2013.12042.x. Epub 2013 Aug 23.
To determine the effect of implant placement on proximal femoral axial bone strains, implant subsidence, implant motion, and failure mechanical properties of Helica implants.
In vitro biomechanical study.
Cadaveric canine femora (n = 8 pairs).
Femora instrumented with strain gauges and kinematic markers were cyclically loaded in axial compression before (intact femora) and after implantation with a Helica prosthesis that engaged only cancellous bone (traditional technique) or cancellous bone and lateral cortex (modified technique) to evaluate bone strains, subsidence, and motion; femora were then loaded to failure to evaluate failure mechanical properties.
After implantation, modified femoral prosthesis angle was 5% less than intact femora and 5.7% less than traditional implanted femora. Medial femoral bone strain was lower (P ≤ .05) for intact (-570 µ strain) than modified (-790), but not (P = .08) traditional (-700) implanted femora. High-load implant subsidence was present but small (-0.087 mm) for the modified technique. Motion (traditional and modified) increased (P = .05) during cyclic loading (-0.17 and -0.328 mm) and failure (P = .04) (-2.121 and -3.390 mm); remaining yield and failure properties revealed no significant findings (P ≤ .05).
The modified technique resulted in a smaller neck angle and minimal subsidence. Bone strain was minimally altered so stress shielding may be less compared to findings with traditional implants. Motion detected during cyclic and failure testing may lead to implant loosening in vivo.
确定种植体植入对螺旋形种植体近端股骨轴向骨应变、种植体下沉、种植体运动及失效力学性能的影响。
体外生物力学研究。
尸体犬股骨(n = 8对)。
在植入仅与松质骨结合的螺旋形假体(传统技术)或与松质骨及外侧皮质结合的螺旋形假体(改良技术)之前(完整股骨)和之后,对安装有应变片和运动学标记物的股骨进行轴向压缩循环加载,以评估骨应变、下沉和运动;然后对股骨加载直至失效,以评估失效力学性能。
植入后,改良股骨假体角度比完整股骨小5%,比传统植入股骨小5.7%。完整股骨(-570微应变)的股骨内侧骨应变低于改良股骨(-790)(P≤0.05),但与传统植入股骨(-700)相比无差异(P = 0.08)。改良技术存在高负荷种植体下沉,但下沉量较小(-0.087毫米)。在循环加载(-0.17和-0.328毫米)和失效(-2.121和-3.390毫米)过程中,运动(传统和改良)增加(P = 0.05);其余屈服和失效性能无显著差异(P≤0.05)。
改良技术导致较小的颈干角和最小的下沉。骨应变变化最小,因此与传统种植体相比,应力遮挡可能较小。在循环和失效测试中检测到的运动可能导致体内种植体松动。