Suppr超能文献

累积和测试绘制的前庭神经鞘瘤手术学习曲线。

The vestibular schwannoma surgery learning curve mapped by the cumulative summation test for learning curve.

机构信息

Department of Otolaryngology, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia.

出版信息

Otol Neurotol. 2013 Oct;34(8):1469-75. doi: 10.1097/MAO.0b013e31829bfc54.

Abstract

OBJECTIVE

To demonstrate and quantify the learning curve for microsurgical excision of vestibular schwannoma in a newly formed neurootologic team by using the cumulative summation test for learning curve (LC-CUSUM). To secondarily identify the factors influencing postoperative facial nerve outcome.

STUDY DESIGN

Retrospective review.

SETTING

Tertiary referral center.

PATIENTS

Between 1999 and 2011, 153 consecutive cases of vestibular schwannoma excision.

INTERVENTION

One-hundred and fifty-three patients underwent excision of vestibular schwannoma.

MAIN OUTCOME MEASURES

Facial nerve outcomes were assessed using the House-Brackmann (HB) facial nerve grading system. Postoperative facial nerve outcomes at 12 months were analyzed using the LC-CUSUM method with HB Grades I to III being defined as successful outcomes. The factors that influence postoperative facial nerve outcome were analyzed.

RESULTS

The constructed learning curve shows a gradual improvement in facial nerve outcomes. The learning curve crossed the derived LC-CUSUM barrier at the 56th procedure, indicating that sufficient evidence had accumulated to demonstrate that the surgeon had achieved optimal outcomes at this point. Tumor size (p = 0.008) and surgical approach (p = 0.005) were 2 additional significant factors influencing postoperative facial nerve outcome.

CONCLUSION

The learning curve is evident in this series of microsurgical excisions of vestibular schwannoma. A newly formed team needs to perform at least 56 cases to gain sufficient experience to accomplish optimal results. Position along the learning curve, tumor size, and familiarity with a preferred surgical approach are the factors, which dominated facial nerve outcome. We recommend the use of LC-CUSUM test for learning curve analysis.

摘要

目的

通过使用累积和测试(LC-CUSUM)对学习曲线(LC)进行分析,展示并量化新成立的神经耳科团队在进行前庭神经鞘瘤显微切除术时的学习曲线,并确定影响术后面神经结果的因素。

研究设计

回顾性研究。

设置

三级转诊中心。

患者

1999 年至 2011 年间,连续 153 例前庭神经鞘瘤切除术。

干预措施

153 例患者行前庭神经鞘瘤切除术。

主要观察指标

采用 House-Brackmann(HB)面神经分级系统评估面神经结果。采用 LC-CUSUM 方法分析术后 12 个月的面神经结果,将 HB 分级 I 至 III 定义为成功结果。分析影响术后面神经结果的因素。

结果

所构建的学习曲线显示面神经结果逐渐改善。学习曲线在第 56 次手术时越过了推导的 LC-CUSUM 障碍,这表明已经积累了足够的证据表明此时外科医生已经取得了最佳的结果。肿瘤大小(p=0.008)和手术入路(p=0.005)是另外两个影响术后面神经结果的显著因素。

结论

在本系列前庭神经鞘瘤显微切除术的研究中,学习曲线明显。新成立的团队需要完成至少 56 例手术,才能获得足够的经验,以取得最佳效果。沿学习曲线的位置、肿瘤大小和对首选手术入路的熟悉程度是影响面神经结果的主要因素。我们建议使用 LC-CUSUM 测试进行学习曲线分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验