Suppr超能文献

关于联想学习和时间学习争论的一个解决方案。

A resolution of the debate about associative and temporal learning.

作者信息

Church Russell M

机构信息

Brown University, United States.

出版信息

Behav Processes. 2014 Jan;101:163-5. doi: 10.1016/j.beproc.2013.08.011. Epub 2013 Aug 29.

Abstract

For more than a century, there has been an extensive experimental literature on both associative and temporal learning. Associative learning is based on strength of associations between elements. In contrast, temporal learning is based on durations of intervals between time markers. The same procedures have often been used to examine the formation of associative bonds between elements and to examine the learning of durations between time markers. Although there is general agreement on the behavioral results, different computational models of associative and temporal learning have led to a lengthy debate regarding whether associations between elements or interval durations account for these results. The purpose of this article is to propose a resolution that requires the development and evaluation of a computational model of procedures that produce associative and/or temporal learning. Standard methods of goodness-of-fit, simplicity, and generality can be supplemented by Turing tests to determine the extent to which a computer algorithm can predict whether the behavior came from the animal or the model. A successful general model should help guide the development of specific alternative models.

摘要

一个多世纪以来,关于联想学习和时间学习都有大量的实验文献。联想学习基于元素之间关联的强度。相比之下,时间学习基于时间标记之间间隔的持续时间。相同的程序经常被用于检验元素之间联想纽带的形成以及时间标记之间持续时间的学习。尽管在行为结果上存在普遍共识,但联想学习和时间学习的不同计算模型引发了一场关于元素之间的关联还是间隔持续时间能够解释这些结果的长期争论。本文的目的是提出一种解决方案,这需要开发和评估产生联想学习和/或时间学习的程序的计算模型。拟合优度、简单性和通用性的标准方法可以通过图灵测试来补充,以确定计算机算法能够在多大程度上预测行为是来自动物还是模型。一个成功的通用模型应该有助于指导特定替代模型的开发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验