Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, 94305 Stanford, CA, USA; Center for Applied Geosciences, University of Tübingen, Hoelderlinstrasse 12, D-72074 Tübingen, Germany.
J Contam Hydrol. 2013 Oct;153:51-68. doi: 10.1016/j.jconhyd.2013.07.006. Epub 2013 Aug 8.
Mixing processes significantly affect and limit contaminant transport and transformation rates in the subsurface. The correct quantification of mixing in groundwater systems must account for diffusion, local-scale dispersion and the flow variability in heterogeneous flow fields (e.g., flow-focusing in high-conductivity and de-focusing in low-conductivity zones). Recent results of multitracer laboratory experiments revealed the significant effect of compound-specific diffusive properties on the physical displacement of dissolved species across a representative range of groundwater flow velocities. The goal of this study is to investigate the role of diffusion and compound-specific mixing for solute transport across a range of scales including: (i) pore-scale (10⁻² m), (ii) laboratory bench-scale (10⁰ m) and (iii) field-scale (~10² m). We investigate both conservative and mixing-controlled reactive transport using pore-scale modeling, flow-through laboratory experiments and simulations, and field-scale numerical modeling of complex heterogeneous hydraulic conductivity fields with statistical properties similar to the ones reported for the extensively investigated Borden aquifer (Ontario, Canada) and Columbus aquifer (Mississippi, USA, also known as MADE site). We consider different steady-state and transient transport scenarios. For the conservative cases we use as a metric of mixing the exponential of the Shannon entropy to quantify solute dilution either in a given volume (dilution index) or in a given solute flux (flux-related dilution index). The decrease in the mass and the mass-flux of the contaminant plumes is evaluated to quantify reactive mixing. The results show that diffusive processes, occurring at the small-scale of a pore channel, strongly affect conservative and reactive solute transport at larger macroscopic scales. The outcomes of our study illustrate the need to consider and properly account for compound-specific diffusion and mixing limitations in order to accurately describe and predict conservative and reactive transport in porous media.
混合过程会显著影响和限制污染物在地下水中的运移和转化速率。地下水系统中混合的正确量化必须考虑扩散、局部尺度弥散以及非均质地层流场中的流动变化(例如,高导带中的流聚焦和低导带中的去聚焦)。最近的多示踪剂实验室实验结果表明,化合物特定扩散性质对溶解物质在代表性地下水流速范围内的物理位移有显著影响。本研究的目的是研究扩散和化合物特定混合对溶质在一系列尺度上的输运的作用,包括:(i)孔隙尺度(10⁻² m),(ii)实验室台架尺度(10⁰ m)和(iii)野外尺度(~10² m)。我们通过孔隙尺度模拟、流动实验室实验和模拟以及具有与广泛研究的博登含水层(加拿大安大略省)和哥伦布含水层(美国密西西比州,也称为 MADE 场地)相似统计特性的复杂非均质水力传导率场的野外尺度数值模拟,研究了保守和混合控制的反应性运输。我们考虑了不同的稳态和瞬态传输情景。对于保守情况,我们使用香农熵的指数作为混合的度量来量化给定体积(稀释指数)或给定溶质通量(通量相关稀释指数)中的溶质稀释。通过评估污染物羽流的质量和质量通量的减少来量化反应性混合。结果表明,在孔隙通道的小尺度上发生的扩散过程会强烈影响宏观尺度上的保守和反应性溶质运移。我们研究的结果表明,为了准确描述和预测多孔介质中的保守和反应性输运,需要考虑并正确考虑化合物特定的扩散和混合限制。