IEEE Trans Image Process. 2013 Dec;22(12):4930-7. doi: 10.1109/TIP.2013.2279942. Epub 2013 Aug 27.
Reconstruction of unknown objects by microwave illumination requires efficient inversion for measured electromagnetic scattering data. In the integral equation approach for reconstructing dielectric objects based on the Born iterative method or its variations, the volume integral equations are involved because the imaging domain is fully inhomogeneous. When solving the forward scattering integral equation, the Nyström method is used because the traditional method of moments may be inconvenient due to the inhomogeneity of the imaging domain. The benefits of the Nyström method include the simple implementation without using any basis and testing functions and low requirement on geometrical discretization. When solving the inverse scattering integral equation, the Gauss-Newton minimization approach with a line search method (LSM) and multiplicative regularization method (MRM) is employed. The LSM can optimize the search of step size in each iteration, whereas the MRM may reduce the number of numerical experiments for choosing the regularization parameter. Numerical examples for reconstructing typical dielectric objects under limited observation angles are presented to illustrate the inversion approach.
通过微波照明对未知物体进行重建需要对测量的电磁散射数据进行有效的反演。在基于 Born 迭代法或其变体的基于积分方程的方法中,由于成像域是完全非均匀的,因此涉及体积积分方程。在求解正向散射积分方程时,使用 Nyström 方法,因为由于成像域的非均匀性,传统的矩量法可能不方便。Nyström 方法的优点包括无需使用任何基函数和测试函数,并且对几何离散化的要求较低。在求解逆散射积分方程时,采用具有线搜索方法 (LSM) 和乘法正则化方法 (MRM) 的 Gauss-Newton 最小化方法。LSM 可以优化每个迭代中的步长搜索,而 MRM 可以减少选择正则化参数的数值实验次数。为了说明反演方法,给出了在有限观测角下重建典型介电物体的数值示例。