Schweiger Martin, Arridge Simon R, Nissilä Ilkka
Department of Computer Science, University College London, Gower Street London WC1E 6BT, UK.
Phys Med Biol. 2005 May 21;50(10):2365-86. doi: 10.1088/0031-9155/50/10/013. Epub 2005 May 5.
We present a regularized Gauss-Newton method for solving the inverse problem of parameter reconstruction from boundary data in frequency-domain diffuse optical tomography. To avoid the explicit formation and inversion of the Hessian which is often prohibitively expensive in terms of memory resources and runtime for large-scale problems, we propose to solve the normal equation at each Newton step by means of an iterative Krylov method, which accesses the Hessian only in the form of matrix-vector products. This allows us to represent the Hessian implicitly by the Jacobian and regularization term. Further we introduce transformation strategies for data and parameter space to improve the reconstruction performance. We present simultaneous reconstructions of absorption and scattering distributions using this method for a simulated test case and experimental phantom data.
我们提出了一种正则化高斯-牛顿法,用于解决频域扩散光学层析成像中从边界数据进行参数重建的逆问题。为了避免在大规模问题中,由于内存资源和运行时间的限制,显式形成和求逆海森矩阵通常成本过高,我们建议在每个牛顿步通过迭代克雷洛夫方法求解正规方程,该方法仅以矩阵-向量乘积的形式访问海森矩阵。这使我们能够通过雅可比矩阵和正则化项隐式表示海森矩阵。此外,我们引入了数据和参数空间的变换策略来提高重建性能。我们使用此方法对模拟测试案例和实验体模数据进行了吸收和散射分布的同步重建。