Suppr超能文献

从启发式优化到字典学习:图像去噪算法的综述与全面比较。

From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms.

出版信息

IEEE Trans Cybern. 2014 Jul;44(7):1001-13. doi: 10.1109/TCYB.2013.2278548. Epub 2013 Aug 29.

Abstract

Image denoising is a well explored topic in the field of image processing. In the past several decades, the progress made in image denoising has benefited from the improved modeling of natural images. In this paper, we introduce a new taxonomy based on image representations for a better understanding of state-of-the-art image denoising techniques. Within each category, several representative algorithms are selected for evaluation and comparison. The experimental results are discussed and analyzed to determine the overall advantages and disadvantages of each category. In general, the nonlocal methods within each category produce better denoising results than local ones. In addition, methods based on overcomplete representations using learned dictionaries perform better than others. The comprehensive study in this paper would serve as a good reference and stimulate new research ideas in image denoising.

摘要

图像去噪是图像处理领域中一个研究得很好的课题。在过去的几十年中,图像去噪的进展受益于对自然图像的改进建模。在本文中,我们基于图像表示法引入了一种新的分类法,以便更好地理解最新的图像去噪技术。在每个类别中,选择了几个有代表性的算法进行评估和比较。讨论和分析实验结果以确定每个类别的整体优缺点。一般来说,每个类别中的非局部方法比局部方法产生更好的去噪效果。此外,基于学习字典的过完备表示的方法比其他方法表现更好。本文的综合研究将作为一个很好的参考,并激发图像去噪领域的新研究思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验