文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于复数无参局部低秩处理的分布校正(NORDIC)PCA 对扩散磁共振成像(dMRI)进行降噪。

NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing.

机构信息

Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA.

Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA.

出版信息

Neuroimage. 2021 Feb 1;226:117539. doi: 10.1016/j.neuroimage.2020.117539. Epub 2020 Nov 10.


DOI:10.1016/j.neuroimage.2020.117539
PMID:33186723
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7881933/
Abstract

Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted images of the same anatomy, it is well-suited for denoising methods that utilize correlations across the image series to improve the apparent SNR and the subsequent data analysis. In this work, we introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix distributions to remove signal components which cannot be distinguished from thermal noise. The utility of the proposed framework for denoising dMRI is demonstrated on both simulations and experimental data obtained at 3 Tesla with different resolutions using human connectome project style acquisitions. The proposed framework leads to substantially enhanced quantitative performance for estimating diffusion tractography related measures and for resolving crossing fibers as compared to a conventional/state-of-the-art dMRI denoising method.

摘要

扩散加权磁共振成像(dMRI)在神经科学和临床应用的广泛领域中具有重要的应用价值。然而,为了提高精细脑结构和连接组学的描绘能力,需要高分辨率的 dMRI,但这受到其信噪比(SNR)低的限制。由于 dMRI 依赖于对同一解剖结构的多个不同扩散加权图像的采集,因此非常适合利用图像序列之间的相关性来提高表观 SNR 并随后进行数据分析的去噪方法。在这项工作中,我们引入并定量评估了一种全面的框架,即用于处理 dMRI 的基于分布校正的噪声减少(NORDIC)PCA 方法。NORDIC 使用 g 因子校正的复 dMRI 重建的低秩建模和非渐近随机矩阵分布来去除无法与热噪声区分开来的信号分量。在所提出的框架的实用性上,通过使用人类连接组项目风格采集在 3 Tesla 上获得的不同分辨率的模拟和实验数据进行了证明。与传统/最先进的 dMRI 去噪方法相比,所提出的框架可显著提高估计扩散轨迹相关测量值和解决交叉纤维的定量性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/cd9af7581552/nihms-1666840-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/bcd35a6348eb/nihms-1666840-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/ce575cb4aee3/nihms-1666840-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/a325c4f45965/nihms-1666840-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/8f3cea052736/nihms-1666840-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/11f59a82b26d/nihms-1666840-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/59ecb187ac5f/nihms-1666840-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/3ae6c0ae4609/nihms-1666840-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/49cce14c7b5e/nihms-1666840-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/9497302eab53/nihms-1666840-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/ae443e07d95f/nihms-1666840-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/cd9af7581552/nihms-1666840-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/bcd35a6348eb/nihms-1666840-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/ce575cb4aee3/nihms-1666840-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/a325c4f45965/nihms-1666840-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/8f3cea052736/nihms-1666840-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/11f59a82b26d/nihms-1666840-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/59ecb187ac5f/nihms-1666840-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/3ae6c0ae4609/nihms-1666840-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/49cce14c7b5e/nihms-1666840-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/9497302eab53/nihms-1666840-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/ae443e07d95f/nihms-1666840-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f5/7881933/cd9af7581552/nihms-1666840-f0011.jpg

相似文献

[1]
NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing.

Neuroimage. 2021-2-1

[2]
Denoise magnitude diffusion magnetic resonance images via variance-stabilizing transformation and optimal singular-value manipulation.

Neuroimage. 2020-7-15

[3]
A field-monitoring-based approach for correcting eddy-current-induced artifacts of up to the 2 spatial order in human-connectome-project-style multiband diffusion MRI experiment at 7T: A pilot study.

Neuroimage. 2020-8-1

[4]
Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast.

Neuroimage. 2015-11-15

[5]
High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.

Magn Reson Med. 2018-3-30

[6]
High resolution whole brain diffusion imaging at 7T for the Human Connectome Project.

Neuroimage. 2015-11-15

[7]
High-field mr diffusion-weighted image denoising using a joint denoising convolutional neural network.

J Magn Reson Imaging. 2019-4-22

[8]
Denoising high angular resolution diffusion imaging data by combining singular value decomposition and non-local means filter.

J Neurosci Methods. 2018-11-22

[9]
Increased sensitivity and signal-to-noise ratio in diffusion-weighted MRI using multi-echo acquisitions.

Neuroimage. 2020-11-1

[10]
Surface-driven registration method for the structure-informed segmentation of diffusion MR images.

Neuroimage. 2016-10-1

引用本文的文献

[1]
High-resolution quantitative T mapping of the human brain at 7 T using a multi-echo spin-echo sequence and dictionary-based modeling.

Imaging Neurosci (Camb). 2025-7-25

[2]
Multi-echo acquisition and thermal denoising advances precision functional imaging.

Imaging Neurosci (Camb). 2025-1-9

[3]
Leveraging multi-echo EPI to enhance BOLD sensitivity in task-based olfactory fMRI.

Imaging Neurosci (Camb). 2024-12-2

[4]
Quantifying human gray matter microstructure using neurite exchange imaging (NEXI) and 300 mT/m gradients.

Imaging Neurosci (Camb). 2024-3-6

[5]
Accelerated diffusion-weighted magnetic resonance imaging at 7 T: Joint reconstruction for shift-encoded navigator-based interleaved echo planar imaging (JETS-NAViEPI).

Imaging Neurosci (Camb). 2024-2-5

[6]
Denoising diffusion MRI: Considerations and implications for analysis.

Imaging Neurosci (Camb). 2024-1-9

[7]
Efficient PCA denoising of spatially correlated redundant MRI data.

Imaging Neurosci (Camb). 2023-12-18

[8]
Precision Functional Neuroimaging Reveals Individually Specific Auditory Responses in Infants.

bioRxiv. 2025-8-4

[9]
Diff5T: Benchmarking human brain diffusion MRI with an extensive 5.0 Tesla k-space and spatial dataset.

Sci Data. 2025-8-4

[10]
Evaluating the impact of denoising diffusion MRI data on tractometry metrics of optic tract abnormalities in glaucoma.

Sci Rep. 2025-7-16

本文引用的文献

[1]
Diffusion Imaging in the Post HCP Era.

J Magn Reson Imaging. 2021-7

[2]
Denoise magnitude diffusion magnetic resonance images via variance-stabilizing transformation and optimal singular-value manipulation.

Neuroimage. 2020-7-15

[3]
Brief review of image denoising techniques.

Vis Comput Ind Biomed Art. 2019-7-8

[4]
Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction.

EURASIP J Image Video Process. 2017

[5]
Complex diffusion-weighted image estimation via matrix recovery under general noise models.

Neuroimage. 2019-6-18

[6]
A Review of Denoising Medical Images Using Machine Learning 
Approaches.

Curr Med Imaging Rev. 2018-10

[7]
Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects.

Neuroimage. 2018-9-24

[8]
Overview and Critical Appraisal of Arterial Spin Labelling Technique in Brain Perfusion Imaging.

Contrast Media Mol Imaging. 2018-5-8

[9]
Imaging brain microstructure with diffusion MRI: practicality and applications.

NMR Biomed. 2017-11-29

[10]
Denoising of diffusion MRI using random matrix theory.

Neuroimage. 2016-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索