Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
Neuroimage. 2021 Feb 1;226:117539. doi: 10.1016/j.neuroimage.2020.117539. Epub 2020 Nov 10.
Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted images of the same anatomy, it is well-suited for denoising methods that utilize correlations across the image series to improve the apparent SNR and the subsequent data analysis. In this work, we introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix distributions to remove signal components which cannot be distinguished from thermal noise. The utility of the proposed framework for denoising dMRI is demonstrated on both simulations and experimental data obtained at 3 Tesla with different resolutions using human connectome project style acquisitions. The proposed framework leads to substantially enhanced quantitative performance for estimating diffusion tractography related measures and for resolving crossing fibers as compared to a conventional/state-of-the-art dMRI denoising method.
扩散加权磁共振成像(dMRI)在神经科学和临床应用的广泛领域中具有重要的应用价值。然而,为了提高精细脑结构和连接组学的描绘能力,需要高分辨率的 dMRI,但这受到其信噪比(SNR)低的限制。由于 dMRI 依赖于对同一解剖结构的多个不同扩散加权图像的采集,因此非常适合利用图像序列之间的相关性来提高表观 SNR 并随后进行数据分析的去噪方法。在这项工作中,我们引入并定量评估了一种全面的框架,即用于处理 dMRI 的基于分布校正的噪声减少(NORDIC)PCA 方法。NORDIC 使用 g 因子校正的复 dMRI 重建的低秩建模和非渐近随机矩阵分布来去除无法与热噪声区分开来的信号分量。在所提出的框架的实用性上,通过使用人类连接组项目风格采集在 3 Tesla 上获得的不同分辨率的模拟和实验数据进行了证明。与传统/最先进的 dMRI 去噪方法相比,所提出的框架可显著提高估计扩散轨迹相关测量值和解决交叉纤维的定量性能。
Magn Reson Med. 2018-3-30
Neuroimage. 2015-11-15
J Magn Reson Imaging. 2019-4-22
Imaging Neurosci (Camb). 2025-7-25
Imaging Neurosci (Camb). 2025-1-9
Imaging Neurosci (Camb). 2024-12-2
Imaging Neurosci (Camb). 2024-3-6
Imaging Neurosci (Camb). 2024-1-9
Imaging Neurosci (Camb). 2023-12-18
J Magn Reson Imaging. 2021-7
Vis Comput Ind Biomed Art. 2019-7-8
Curr Med Imaging Rev. 2018-10
Contrast Media Mol Imaging. 2018-5-8
NMR Biomed. 2017-11-29
Neuroimage. 2016-11-15