Suppr超能文献

最小面积轮廓变化法用于 FLAIR MRI 上高亮多发性硬化病变勾画,可提高勾画者间的一致性和效率。

Improved operator agreement and efficiency using the minimum area contour change method for delineation of hyperintense multiple sclerosis lesions on FLAIR MRI.

机构信息

Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY, USA.

出版信息

BMC Med Imaging. 2013 Sep 3;13:29. doi: 10.1186/1471-2342-13-29.

Abstract

BACKGROUND

Activity of disease in patients with multiple sclerosis (MS) is monitored by detecting and delineating hyper-intense lesions on MRI scans. The Minimum Area Contour Change (MACC) algorithm has been created with two main goals: a) to improve inter-operator agreement on outlining regions of interest (ROIs) and b) to automatically propagate longitudinal ROIs from the baseline scan to a follow-up scan.

METHODS

The MACC algorithm first identifies an outer bound for the solution path, forms a high number of iso-contour curves based on equally spaced contour values, and then selects the best contour value to outline the lesion. The MACC software was tested on a set of 17 FLAIR MRI images evaluated by a pair of human experts and a longitudinal dataset of 12 pairs of T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images that had lesion analysis ROIs drawn by a single expert operator.

RESULTS

In the tests where two human experts evaluated the same MRI images, the MACC program demonstrated that it could markedly reduce inter-operator outline error. In the longitudinal part of the study, the MACC program created ROIs on follow-up scans that were in close agreement to the original expert's ROIs. Finally, in a post-hoc analysis of 424 follow-up scans 91% of propagated MACC were accepted by an expert and only 9% of the final accepted ROIS had to be created or edited by the expert.

CONCLUSION

When used with an expert operator's verification of automatically created ROIs, MACC can be used to improve inter- operator agreement and decrease analysis time, which should improve data collected and analyzed in multicenter clinical trials.

摘要

背景

多发性硬化症(MS)患者的疾病活动通过检测和描绘 MRI 扫描中的高信号病变来监测。最小面积轮廓变化(MACC)算法有两个主要目标:a)提高勾画感兴趣区域(ROI)的操作员间的一致性,b)自动将基线扫描的纵向 ROI 传播到后续扫描。

方法

MACC 算法首先确定解决方案路径的外部边界,基于等距轮廓值形成大量的等轮廓曲线,然后选择最佳轮廓值来勾画病变。MACC 软件在一组 17 个 FLAIR MRI 图像上进行了测试,由一对人类专家进行评估,以及一组 12 对 T2 加权液衰减反转恢复(FLAIR)图像的纵向数据集进行了测试,这些图像的病变分析 ROI 由一位专家操作员绘制。

结果

在两位人类专家评估相同 MRI 图像的测试中,MACC 程序表明它可以显著减少操作员间的轮廓勾画误差。在研究的纵向部分,MACC 程序在后续扫描上创建的 ROI 与原始专家的 ROI 非常吻合。最后,在对 424 次随访扫描的事后分析中,专家接受了 91%的传播 MACC,只有 9%的最终接受 ROI 需要由专家创建或编辑。

结论

当与专家操作员对自动创建的 ROI 的验证一起使用时,MACC 可用于提高操作员间的一致性并减少分析时间,这应能改善在多中心临床试验中收集和分析的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abe0/3766707/1bc1538b8f87/1471-2342-13-29-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验