Suppr超能文献

小巧玲珑的心脏遗传学,充分利用秀丽隐杆线虫紧凑的基因组。

Heart genetics in a small package, exploiting the condensed genome of Ciona intestinalis.

机构信息

Department of Biology, Swarthmore College, PA, 19081, USA.

出版信息

Brief Funct Genomics. 2014 Jan;13(1):3-14. doi: 10.1093/bfgp/elt034. Epub 2013 Sep 4.

Abstract

Defects in the initial establishment of cardiogenic cell fate are likely to contribute to pervasive human congenital cardiac abnormalities. However, the molecular underpinnings of nascent cardiac fate induction have proven difficult to decipher. In this review we explore the participation of extracellular, cellular and nuclear factors in comprehensive specification networks. At each level, we elaborate on insights gained through the study of cardiogenesis in the invertebrate chordate Ciona intestinalis and propose productive lines of future research. In-depth discussion of pre-cardiac induction is intended to serve as a paradigm, illustrating the potential use of Ciona to elucidate comprehensive networks underlying additional aspects of chordate cardiogenesis, including directed migration and subspecification of cardiac and pharyngeal lineages.

摘要

心脏发生细胞命运的初始建立缺陷可能导致广泛的人类先天性心脏异常。然而,新生心脏命运诱导的分子基础很难被破解。在这篇综述中,我们探讨了细胞外、细胞内和核因子在全面规范网络中的参与。在每个层面上,我们详细阐述了通过研究无脊椎脊索动物文昌鱼的心脏发生获得的见解,并提出了未来研究的有成效的方向。深入讨论心脏前诱导旨在作为一个范例,说明文昌鱼在阐明脊索动物心脏发生的其他方面的综合网络,包括心脏和咽谱系的定向迁移和亚特化方面的潜在用途。

相似文献

1
Heart genetics in a small package, exploiting the condensed genome of Ciona intestinalis.
Brief Funct Genomics. 2014 Jan;13(1):3-14. doi: 10.1093/bfgp/elt034. Epub 2013 Sep 4.
2
Ciona intestinalis as a model for cardiac development.
Semin Cell Dev Biol. 2007 Feb;18(1):16-26. doi: 10.1016/j.semcdb.2006.12.007. Epub 2006 Dec 20.
3
Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis.
Dev Biol. 2012 Aug 1;368(1):127-39. doi: 10.1016/j.ydbio.2012.05.002. Epub 2012 May 14.
5
Gene regulatory networks for the development and evolution of the chordate heart.
Genes Dev. 2006 Oct 1;20(19):2634-8. doi: 10.1101/gad.1485706.
6
Unraveling genomic regulatory networks in the simple chordate, Ciona intestinalis.
Genome Res. 2005 Dec;15(12):1668-74. doi: 10.1101/gr.3768905.
7
Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis.
Development. 2005 Nov;132(21):4811-8. doi: 10.1242/dev.02051. Epub 2005 Oct 5.
9
The transcription/migration interface in heart precursors of Ciona intestinalis.
Science. 2008 Jun 6;320(5881):1349-52. doi: 10.1126/science.1158170.
10
A genomewide survey of developmentally relevant genes in Ciona intestinalis. VIII. Genes for PI3K signaling and cell cycle.
Dev Genes Evol. 2003 Jun;213(5-6):284-90. doi: 10.1007/s00427-003-0323-y. Epub 2003 May 13.

引用本文的文献

1
Lhx3/4 initiates a cardiopharyngeal-specific transcriptional program in response to widespread FGF signaling.
PLoS Biol. 2024 Jan 25;22(1):e3002169. doi: 10.1371/journal.pbio.3002169. eCollection 2024 Jan.
2
Variable levels of drift in tunicate cardiopharyngeal gene regulatory elements.
Evodevo. 2019 Oct 11;10:24. doi: 10.1186/s13227-019-0137-2. eCollection 2019.
3
Regulation and evolution of muscle development in tunicates.
Evodevo. 2019 Jun 24;10:13. doi: 10.1186/s13227-019-0125-6. eCollection 2019.
5
as a Simple Chordate Model for Heart Development and Regeneration.
J Cardiovasc Dev Dis. 2016 Sep;3(3). doi: 10.3390/jcdd3030025. Epub 2016 Aug 9.
7
Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis.
Evodevo. 2016 Aug 31;7(1):21. doi: 10.1186/s13227-016-0056-4. eCollection 2016.
8
Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates.
Curr Opin Genet Dev. 2015 Jun;32:119-28. doi: 10.1016/j.gde.2015.02.008. Epub 2015 Mar 25.

本文引用的文献

1
Fibronectin mediates mesendodermal cell fate decisions.
Development. 2013 Jun;140(12):2587-96. doi: 10.1242/dev.089052.
3
Dynamic regulation of the structure and functions of integrin adhesions.
Dev Cell. 2013 Mar 11;24(5):447-58. doi: 10.1016/j.devcel.2013.02.012.
5
Caveolae as plasma membrane sensors, protectors and organizers.
Nat Rev Mol Cell Biol. 2013 Feb;14(2):98-112. doi: 10.1038/nrm3512.
6
How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches.
Front Physiol. 2012 Dec 21;3:475. doi: 10.3389/fphys.2012.00475. eCollection 2012.
7
Cardiac differentiation in Xenopus is initiated by mespa.
Cardiovasc Res. 2013 Mar 1;97(3):454-63. doi: 10.1093/cvr/cvs354. Epub 2012 Dec 12.
8
Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage.
Cell. 2012 Sep 28;151(1):206-20. doi: 10.1016/j.cell.2012.07.035. Epub 2012 Sep 12.
9
Early cardiac development: a view from stem cells to embryos.
Cardiovasc Res. 2012 Dec 1;96(3):352-62. doi: 10.1093/cvr/cvs270. Epub 2012 Aug 14.
10
Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors.
Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):13016-21. doi: 10.1073/pnas.1120299109. Epub 2012 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验