Centre for Clean Energy Technology and School of Chemistry and Forensic Science, University of Technology, Sydney, City Campus, Broadway, Sydney NSW 2007 (Australia).
Chem Asian J. 2013 Dec;8(12):3142-6. doi: 10.1002/asia.201300858. Epub 2013 Sep 4.
Herein, we report a facile and "green" synthetic route for the preparation of Ge@C core-shell nanocomposites by using a low-cost Ge precursor. Field-emission scanning electron microscopy and transmission electron microscopy analyses confirmed the core-shell nanoarchitecture of the Ge@C nanocomposites, with particle sizes ranging from 60 to 100 nm. Individual Ge nanocrystals were coated by a continuous carbon layer, which had an average thickness of 2 nm. When applied as an anode materials for lithium-ion batteries, the Ge@C nanocomposites exhibited a high initial discharge capacity of 1670 mAh g(-1) and superior rate capability. In particular, Ge@C nanocomposite electrodes maintained a reversible capacity of 734 mAh g(-1) after repeated cycling at a current density of 800 mA g(-1) over 100 cycles.
在此,我们报告了一种通过使用低成本 Ge 前体制备 Ge@C 核壳纳米复合材料的简便和“绿色”合成路线。场发射扫描电子显微镜和透射电子显微镜分析证实了 Ge@C 纳米复合材料的核壳纳米结构,颗粒尺寸范围从 60 到 100nm。单个 Ge 纳米晶体被连续的碳层包裹,其平均厚度为 2nm。当用作锂离子电池的阳极材料时,Ge@C 纳米复合材料表现出 1670mAhg(-1)的高初始放电容量和优异的倍率性能。特别地,Ge@C 纳米复合材料电极在 800mA g(-1)的电流密度下经过 100 次循环后,仍能以 734mAhg(-1)的可逆容量保持稳定。