Department of Integrative Biology and Pharmacology (C.S.B., H.J.H., A.A.G., C.W.D.), and School of Biomedical Informatics (C.N.C.), University of Texas Health Science Center, Houston, Texas; and Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina (C.N.C.).
J Pharmacol Exp Ther. 2013 Nov;347(2):265-75. doi: 10.1124/jpet.113.208157. Epub 2013 Sep 4.
Nine membrane-bound adenylyl cyclase (AC) isoforms catalyze the production of the second messenger cyclic AMP (cAMP) in response to various stimuli. Reduction of AC activity has well documented benefits, including benefits for heart disease and pain. These roles have inspired development of isoform-selective AC inhibitors, a lack of which currently limits exploration of functions and/or treatment of dysfunctions involving AC/cAMP signaling. However, inhibitors described as AC5- or AC1-selective have not been screened against the full panel of AC isoforms. We have measured pharmacological inhibitor profiles for all transmembrane AC isoforms. We found that 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22,536), 2-amino-7-(furanyl)-7,8-dihydro-5(6H)-quinazolinone (NKY80), and adenine 9-β-d-arabinofuranoside (Ara-A), described as supposedly AC5-selective, do not discriminate between AC5 and AC6, whereas the putative AC1-selective inhibitor 5-[[2-(6-amino-9H-purin-9-yl)ethyl]amino]-1-pentanol (NB001) does not directly target AC1 to reduce cAMP levels. A structure-based virtual screen targeting the ATP binding site of AC was used to identify novel chemical structures that show some preference for AC1 or AC2. Mutation of the AC2 forskolin binding pocket does not interfere with inhibition by SQ22,536 or the novel AC2 inhibitor, suggesting binding to the catalytic site. Thus, we show that compounds lacking the adenine chemical signature and targeting the ATP binding site can potentially be used to develop AC isoform-specific inhibitors, and discuss the need to reinterpret literature using AC5/6-selective molecules SQ22,536, NKY80, and Ara-A.
九种膜结合的腺苷酸环化酶(AC)同工酶可响应各种刺激催化第二信使环腺苷酸(cAMP)的产生。降低 AC 活性具有良好的记录益处,包括对心脏病和疼痛的益处。这些作用激发了同工酶选择性 AC 抑制剂的开发,目前缺乏这种抑制剂限制了对涉及 AC/cAMP 信号的功能和/或功能障碍的探索。然而,被描述为 AC5 或 AC1 选择性的抑制剂尚未针对所有跨膜 AC 同工酶进行筛选。我们已经测量了所有跨膜 AC 同工酶的药理学抑制剂谱。我们发现,9-(四氢-2-呋喃基)-9H-嘌呤-6-胺(SQ22,536)、2-氨基-7-(呋喃基)-7,8-二氢-5(6H)-喹唑啉酮(NKY80)和腺嘌呤 9-β-D-阿拉伯呋喃糖苷(Ara-A),被描述为应该是 AC5 选择性的,不能区分 AC5 和 AC6,而假定的 AC1 选择性抑制剂 5-[[2-(6-氨基-9H-嘌呤-9-基)乙基]氨基]-1-戊醇(NB001)不能直接针对 AC1 降低 cAMP 水平。针对 AC 的 ATP 结合位点的基于结构的虚拟筛选用于鉴定显示对 AC1 或 AC2 具有一定选择性的新型化学结构。AC2 福司可林结合口袋的突变不干扰 SQ22,536 或新型 AC2 抑制剂的抑制作用,这表明与催化位点结合。因此,我们表明缺乏腺嘌呤化学特征并针对 ATP 结合位点的化合物可用于开发 AC 同工酶特异性抑制剂,并讨论需要使用缺乏腺嘌呤化学特征且针对 ATP 结合位点的化合物重新解释文献,这些化合物包括 SQ22,536、NKY80 和 Ara-A。