Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
PLoS Comput Biol. 2013;9(8):e1003207. doi: 10.1371/journal.pcbi.1003207. Epub 2013 Aug 29.
A number of incurable retinal diseases causing vision impairments derive from alterations in visual phototransduction. Unraveling the structural determinants of even monogenic retinal diseases would require network-centered approaches combined with atomistic simulations. The transducin G38D mutant associated with the Nougaret Congenital Night Blindness (NCNB) was thoroughly investigated by both mathematical modeling of visual phototransduction and atomistic simulations on the major targets of the mutational effect. Mathematical modeling, in line with electrophysiological recordings, indicates reduction of phosphodiesterase 6 (PDE) recognition and activation as the main determinants of the pathological phenotype. Sub-microsecond molecular dynamics (MD) simulations coupled with Functional Mode Analysis improve the resolution of information, showing that such impairment is likely due to disruption of the PDEγ binding cavity in transducin. Protein Structure Network analyses additionally suggest that the observed slight reduction of theRGS9-catalyzed GTPase activity of transducin depends on perturbed communication between RGS9 and GTP binding site. These findings provide insights into the structural fundamentals of abnormal functioning of visual phototransduction caused by a missense mutation in one component of the signaling network. This combination of network-centered modeling with atomistic simulations represents a paradigm for future studies aimed at thoroughly deciphering the structural determinants of genetic retinal diseases. Analogous approaches are suitable to unveil the mechanism of information transfer in any signaling network either in physiological or pathological conditions.
许多导致视力损伤的不可治愈的视网膜疾病都源于视觉光转化的改变。即使是单基因视网膜疾病的结构决定因素也需要网络中心方法与原子模拟相结合来揭示。与 Nougaret 先天性夜盲症(NCNB)相关的转导蛋白 G38D 突变体已经通过视觉光转化的数学建模和突变效应主要靶点的原子模拟进行了全面研究。数学建模与电生理学记录一致,表明磷酸二酯酶 6(PDE)识别和激活的减少是病理性表型的主要决定因素。亚微秒分子动力学(MD)模拟与功能模式分析相结合提高了信息的分辨率,表明这种损伤可能是由于转导蛋白中 PDEγ 结合腔的破坏。蛋白质结构网络分析还表明,观察到的转导蛋白中 RGS9 催化的 GTPase 活性的轻微降低取决于 RGS9 和 GTP 结合位点之间的通信受到干扰。这些发现为信号网络中一个组成部分的错义突变导致视觉光转化异常功能的结构基础提供了深入了解。这种网络中心建模与原子模拟的结合为未来旨在彻底破译遗传视网膜疾病结构决定因素的研究提供了范例。类似的方法也适用于揭示生理或病理条件下任何信号网络中信息传递的机制。