Suppr超能文献

适体-配体复合物的纳米孔力谱学。

Nanopore force spectroscopy of aptamer-ligand complexes.

机构信息

Lehrstuhl für Bioelektronik, Physik Department, Technische Universität München, Garching, Germany.

出版信息

Biophys J. 2013 Sep 3;105(5):1199-207. doi: 10.1016/j.bpj.2013.07.047.

Abstract

The stability of aptamer-ligand complexes is probed in nanopore-based dynamic force spectroscopy experiments. Specifically, the ATP-binding aptamer is investigated using a backward translocation technique, in which the molecules are initially pulled through an α-hemolysin nanopore from the cis to the trans side of a lipid bilayer membrane, allowed to refold and interact with their target, and then translocated back in the trans-cis direction. From these experiments, the distribution of bound and unbound complexes is determined, which in turn allows determination of the dissociation constant Kd ≈ 0.1 mM of the aptamer and of voltage-dependent unfolding rates. The experiments also reveal differences in binding of the aptamer to AMP, ADP, or ATP ligands. Investigation of an aptamer variant with a stabilized ATP-binding site indicates fast conformational switching of the original aptamer before ATP binding. Nanopore force spectroscopy is also used to study binding of the thrombin-binding aptamer to its target. To detect aptamer-target interactions in this case, the stability of the ligand-free aptamer-containing G-quadruplexes-is tuned via the potassium content of the buffer. Although the presence of thrombin was detected, limitations of the method for aptamers with strong secondary structures and complexes with nanomolar Kd were identified.

摘要

在基于纳米孔的动态力谱实验中研究了适体-配体复合物的稳定性。具体来说,使用反向易位技术研究了 ATP 结合适体,在该技术中,分子最初从顺式侧通过α-溶血素纳米孔被拉到脂质双层膜的反式侧,允许它们重新折叠并与靶标相互作用,然后在反式-顺式方向上再次易位。通过这些实验,确定了结合和未结合复合物的分布,这反过来又允许确定适体的解离常数 Kd ≈ 0.1 mM 和电压依赖性展开速率。实验还揭示了适体与 AMP、ADP 或 ATP 配体结合的差异。对具有稳定 ATP 结合位点的适体变体的研究表明,在 ATP 结合之前,原始适体的构象快速切换。纳米孔力谱也用于研究凝血酶结合适体与其靶标的结合。在这种情况下,为了检测适体-靶标相互作用,通过缓冲液中的钾含量来调整无配体的适体含有的 G-四链体的稳定性。尽管检测到了凝血酶的存在,但该方法对于具有强二级结构的适体和具有纳摩尔 Kd 的复合物存在局限性。

相似文献

1
Nanopore force spectroscopy of aptamer-ligand complexes.
Biophys J. 2013 Sep 3;105(5):1199-207. doi: 10.1016/j.bpj.2013.07.047.
3
A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin.
Angew Chem Int Ed Engl. 2015 Jun 22;54(26):7568-71. doi: 10.1002/anie.201502047. Epub 2015 May 12.
4
Detection of two isomeric binding configurations in a protein-aptamer complex with a biological nanopore.
ACS Nano. 2014 Dec 23;8(12):12826-35. doi: 10.1021/nn506077e. Epub 2014 Dec 12.
8
Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers.
J Colloid Interface Sci. 2007 Nov 1;315(1):99-106. doi: 10.1016/j.jcis.2007.06.040. Epub 2007 Aug 8.
9
Manipulation of a DNA aptamer-protein binding site through arylation of internal guanine residues.
Org Biomol Chem. 2018 May 23;16(20):3831-3840. doi: 10.1039/c8ob00704g.
10
Protein detection by nanopores equipped with aptamers.
J Am Chem Soc. 2012 Feb 8;134(5):2781-7. doi: 10.1021/ja2105653. Epub 2012 Jan 26.

引用本文的文献

1
Biological Nanopores: Engineering on Demand.
Life (Basel). 2021 Jan 5;11(1):27. doi: 10.3390/life11010027.
2
Sensing with Nanopores and Aptamers: A Way Forward.
Sensors (Basel). 2020 Aug 11;20(16):4495. doi: 10.3390/s20164495.
4
Nanopore sensing of individual transcription factors bound to DNA.
Sci Rep. 2015 Jun 25;5:11643. doi: 10.1038/srep11643.
6
Nanopores suggest a negligible influence of CpG methylation on nucleosome packaging and stability.
Nano Lett. 2015 Jan 14;15(1):783-90. doi: 10.1021/nl504522n. Epub 2014 Dec 12.
7
Detection of two isomeric binding configurations in a protein-aptamer complex with a biological nanopore.
ACS Nano. 2014 Dec 23;8(12):12826-35. doi: 10.1021/nn506077e. Epub 2014 Dec 12.
8
Label-free optical detection of biomolecular translocation through nanopore arrays.
ACS Nano. 2014 Oct 28;8(10):10774-81. doi: 10.1021/nn504551d. Epub 2014 Sep 22.
9
Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14325-31. doi: 10.1073/pnas.1415944111. Epub 2014 Sep 15.
10
Rationally manipulating aptamer binding affinities in a stem-loop molecular beacon.
Bioconjug Chem. 2014 Oct 15;25(10):1769-76. doi: 10.1021/bc500286r. Epub 2014 Sep 18.

本文引用的文献

1
Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution.
Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4188-93. doi: 10.1073/pnas.1218062110. Epub 2013 Feb 25.
2
Single-molecule studies of the lysine riboswitch reveal effector-dependent conformational dynamics of the aptamer domain.
Biochemistry. 2012 Nov 13;51(45):9223-33. doi: 10.1021/bi3007753. Epub 2012 Oct 30.
4
Protein detection by nanopores equipped with aptamers.
J Am Chem Soc. 2012 Feb 8;134(5):2781-7. doi: 10.1021/ja2105653. Epub 2012 Jan 26.
5
Quantitative analysis of the nanopore translocation dynamics of simple structured polynucleotides.
Biophys J. 2012 Jan 4;102(1):85-95. doi: 10.1016/j.bpj.2011.11.4011. Epub 2012 Jan 3.
6
Folding energy landscape of the thiamine pyrophosphate riboswitch aptamer.
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1485-9. doi: 10.1073/pnas.1115045109. Epub 2012 Jan 4.
7
Conformational dynamics of the tetracycline-binding aptamer.
Nucleic Acids Res. 2012 Feb;40(4):1807-17. doi: 10.1093/nar/gkr835. Epub 2011 Nov 3.
9
Fluorescent detection of ATP based on signaling DNA aptamer attached silica nanoparticles.
Nanotechnology. 2008 Oct 15;19(41):415605. doi: 10.1088/0957-4484/19/41/415605. Epub 2008 Sep 4.
10
Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13492-7. doi: 10.1073/pnas.1107113108. Epub 2011 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验