Coutinho-Budd Jaeda C, Snider Samuel B, Fitzpatrick Brendan J, Rittiner Joseph E, Zylka Mark J
Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
J Negat Results Biomed. 2013 Sep 8;12:13. doi: 10.1186/1477-5751-12-13.
Rapamycin-induced translocation systems can be used to manipulate biological processes with precise temporal control. These systems are based on rapamycin-induced dimerization of FK506 Binding Protein 12 (FKBP12) with the FKBP Rapamycin Binding (FRB) domain of mammalian target of rapamycin (mTOR). Here, we sought to adapt a rapamycin-inducible phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphatase (Inp54p) system to deplete PIP2 in nociceptive dorsal root ganglia (DRG) neurons.
We genetically targeted membrane-tethered CFP-FRBPLF (a destabilized FRB mutant) to the ubiquitously expressed Rosa26 locus, generating a Rosa26-FRBPLF knockin mouse. In a second knockin mouse line, we targeted Venus-FKBP12-Inp54p to the Calcitonin gene-related peptide-alpha (CGRPα) locus. We hypothesized that after intercrossing these mice, rapamycin treatment would induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in CGRP+ DRG neurons. In control experiments with cell lines, rapamycin induced translocation of Venus-FKBP12-Inp54p to the plasma membrane, and subsequent depletion of PIP2, as measured with a PIP2 biosensor. However, rapamycin did not induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in FRBPLF-expressing DRG neurons (in vitro or in vivo). Moreover, rapamycin treatment did not alter PIP2-dependent thermosensation in vivo. Instead, rapamycin treatment stabilized FRBPLF in cultured DRG neurons, suggesting that rapamycin promoted dimerization of FRBPLF with endogenous FKBP12.
Taken together, our data indicate that these knockin mice cannot be used to inducibly deplete PIP2 in DRG neurons. Moreover, our data suggest that high levels of endogenous FKBP12 could compete for binding to FRBPLF, hence limiting the use of rapamycin-inducible systems to cells with low levels of endogenous FKBP12.
雷帕霉素诱导的易位系统可用于在精确的时间控制下操纵生物过程。这些系统基于雷帕霉素诱导的FK506结合蛋白12(FKBP12)与雷帕霉素哺乳动物靶标(mTOR)的FKBP雷帕霉素结合(FRB)结构域的二聚化。在此,我们试图改造一种雷帕霉素诱导型磷脂酰肌醇4,5-二磷酸(PIP2)特异性磷酸酶(Inp54p)系统,以耗尽伤害性背根神经节(DRG)神经元中的PIP2。
我们通过基因手段将膜锚定的CFP-FRBPLF(一种不稳定的FRB突变体)靶向普遍表达的Rosa26位点,培育出Rosa26-FRBPLF基因敲入小鼠。在第二个基因敲入小鼠品系中,我们将Venus-FKBP12-Inp54p靶向降钙素基因相关肽α(CGRPα)位点。我们推测,将这些小鼠杂交后,雷帕霉素处理会诱导Venus-FKBP12-Inp54p在CGRP+ DRG神经元中易位至质膜。在细胞系的对照实验中,雷帕霉素诱导Venus-FKBP12-Inp54p易位至质膜,并随后耗尽PIP2,这通过PIP2生物传感器进行检测。然而,雷帕霉素并未在表达FRBPLF的DRG神经元中(体外或体内)诱导Venus-FKBP12-Inp54p易位至质膜。此外,雷帕霉素处理并未改变体内PIP2依赖性热感觉。相反,雷帕霉素处理使培养的DRG神经元中的FRBPLF稳定,表明雷帕霉素促进了FRBPLF与内源性FKBP12的二聚化。
综上所述,我们的数据表明这些基因敲入小鼠不能用于在DRG神经元中诱导性耗尽PIP2。此外,我们的数据表明高水平的内源性FKBP12可能竞争与FRBPLF的结合,因此限制了雷帕霉素诱导系统在低水平内源性FKBP12细胞中的应用。