Suppr超能文献

蚊虫驱避剂的计算研究如何有助于控制媒介传播疾病。

How computational studies of mosquito repellents contribute to the control of vector Borne Diseases.

作者信息

Miszta Przemyslaw, Basak Subhash C, Natarajan Ramanathan, Nowak Wieslaw

机构信息

Institute of Physics, N. Copernicus University, ul. Grudziadzka 5, 87-100 Torun, Poland.

出版信息

Curr Comput Aided Drug Des. 2013 Sep;9(3):300-7. doi: 10.2174/15734099113099990018.

Abstract

Vector Borne Diseases (VBD) present a serious threat to millions of people. In this paper various computational approaches towards new drugs design against some of them are reviewed. Malaria attracts particular attention of computational medicinal chemists. A promising strategy of the fight with VBD is usage of insect repellents. N,N-Diethyl-m-toluamide (DEET) has been the mostly used mosquito repellent for over five decades. Its mode of action is still a matter of intensive studies and debate. A possible mechanism of DEET activity is inactivation of odorant receptor proteins expressed in female mosquitoes, and being critical for finding a prey. In order to check possible interactions of DEET with such a transmembrane protein and to indicate a plausible biophore, we have constructed a hybrid "ab initio" model of Anopheles gambiae Odorant Receptor Protein 1 (AgOR1). The transmembrane regions of AgOR1 were predicted using 10 different bioinformatics algorithms and a consensus approach. A full torsional potential energy surface of DEET was determined using the AM1 method and low energy conformers were further optimized using the HF/6-31G method. DEET and a series of diastereomers of alternative repellent cyclohex-3-enyl 2-methylpiperidin-1-yl ketone (220) was docked to the AgOR1 model using the AutoDock 3.0.5 code, and possible interactions sites inside this GPCR AgOR1 were identified.

摘要

媒介传播疾病(VBD)对数百万人构成严重威胁。本文综述了针对其中一些疾病的新药设计的各种计算方法。疟疾引起了计算药物化学家的特别关注。与媒介传播疾病作斗争的一种有前景的策略是使用驱虫剂。N,N-二乙基间甲苯酰胺(避蚊胺,DEET)五十多年来一直是最常用的驱蚊剂。其作用方式仍是深入研究和争论的话题。避蚊胺活性的一种可能机制是使雌性蚊子中表达的气味受体蛋白失活,而这种蛋白对于寻找猎物至关重要。为了检查避蚊胺与这种跨膜蛋白的可能相互作用并指出一个合理的生物活性基团,我们构建了冈比亚按蚊气味受体蛋白1(AgOR1)的混合“从头算”模型。使用10种不同的生物信息学算法和一种共识方法预测了AgOR1的跨膜区域。使用AM1方法确定了避蚊胺的完整扭转势能面,并使用HF/6-31G方法进一步优化了低能量构象。使用AutoDock 3.0.5代码将避蚊胺和一系列替代驱虫剂环己-3-烯基2-甲基哌啶-1-基酮(220)的非对映异构体对接至AgOR1模型,并确定了该GPCR AgOR1内的可能相互作用位点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验