Suppr超能文献

粟酒裂殖酵母Cwf10 N端的结构与功能表征

Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10.

作者信息

Livesay S Brent, Collier Scott E, Bitton Danny A, Bähler Jürg, Ohi Melanie D

机构信息

Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

Eukaryot Cell. 2013 Nov;12(11):1472-89. doi: 10.1128/EC.00140-13. Epub 2013 Sep 6.

Abstract

The spliceosome is a dynamic macromolecular machine that catalyzes the removal of introns from pre-mRNA, yielding mature message. Schizosaccharomyces pombe Cwf10 (homolog of Saccharomyces cerevisiae Snu114 and human U5-116K), an integral member of the U5 snRNP, is a GTPase that has multiple roles within the splicing cycle. Cwf10/Snu114 family members are highly homologous to eukaryotic translation elongation factor EF2, and they contain a conserved N-terminal extension (NTE) to the EF2-like portion, predicted to be an intrinsically unfolded domain. Using S. pombe as a model system, we show that the NTE is not essential, but cells lacking this domain are defective in pre-mRNA splicing. Genetic interactions between cwf10-ΔNTE and other pre-mRNA splicing mutants are consistent with a role for the NTE in spliceosome activation and second-step catalysis. Characterization of Cwf10-NTE by various biophysical techniques shows that in solution the NTE contains regions of both structure and disorder. The first 23 highly conserved amino acids of the NTE are essential for its role in splicing but when overexpressed are not sufficient to restore pre-mRNA splicing to wild-type levels in cwf10-ΔNTE cells. When the entire NTE is overexpressed in the cwf10-ΔNTE background, it can complement the truncated Cwf10 protein in trans, and it immunoprecipitates a complex similar in composition to the late-stage U5.U2/U6 spliceosome. These data show that the structurally flexible NTE is capable of independently incorporating into the spliceosome and improving splicing function, possibly indicating a role for the NTE in stabilizing conformational rearrangements during a splice cycle.

摘要

剪接体是一种动态大分子机器,可催化从前体mRNA中去除内含子,产生成熟的信使RNA。粟酒裂殖酵母Cwf10(酿酒酵母Snu114和人类U5-116K的同源物)是U5 snRNP的一个组成成员,是一种在剪接循环中具有多种作用的GTP酶。Cwf10/Snu114家族成员与真核生物翻译延伸因子EF2高度同源,并且它们在EF2样部分含有保守的N端延伸(NTE),预计是一个内在无序结构域。以粟酒裂殖酵母为模型系统,我们发现NTE并非必不可少,但缺乏该结构域的细胞在前体mRNA剪接方面存在缺陷。cwf10-ΔNTE与其他前体mRNA剪接突变体之间的遗传相互作用与NTE在剪接体激活和第二步催化中的作用一致。通过各种生物物理技术对Cwf10-NTE的表征表明,在溶液中NTE包含有序和无序区域。NTE的前23个高度保守氨基酸对于其在剪接中的作用至关重要,但过表达时不足以将cwf10-ΔNTE细胞中的前体mRNA剪接恢复到野生型水平。当在cwf10-ΔNTE背景中过表达整个NTE时,它可以反式互补截短的Cwf10蛋白,并且它免疫沉淀出一种组成与晚期U5.U2/U6剪接体相似的复合物。这些数据表明,结构灵活的NTE能够独立整合到剪接体中并改善剪接功能,这可能表明NTE在剪接循环中稳定构象重排方面发挥作用。

相似文献

1
Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10.
Eukaryot Cell. 2013 Nov;12(11):1472-89. doi: 10.1128/EC.00140-13. Epub 2013 Sep 6.
4
Assembly of Snu114 into U5 snRNP requires Prp8 and a functional GTPase domain.
RNA. 2006 May;12(5):862-71. doi: 10.1261/rna.2319806. Epub 2006 Mar 15.
5
Splicing functions and global dependency on fission yeast slu7 reveal diversity in spliceosome assembly.
Mol Cell Biol. 2013 Aug;33(16):3125-36. doi: 10.1128/MCB.00007-13. Epub 2013 Jun 10.
6
The N-terminus of Prp1 (Prp6/U5-102 K) is essential for spliceosome activation in vivo.
Nucleic Acids Res. 2010 Mar;38(5):1610-22. doi: 10.1093/nar/gkp1155. Epub 2009 Dec 9.
7
Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing.
Nature. 2011 May 25;474(7350):173-8. doi: 10.1038/nature10143.
10
Structural and functional insights into the N-terminus of Schizosaccharomyces pombe Cdc5.
Biochemistry. 2014 Oct 21;53(41):6439-51. doi: 10.1021/bi5008639. Epub 2014 Oct 8.

引用本文的文献

1
Investigating the Role of the Zinc Finger Protein ZC2HC1C on Autism Spectrum Disorder Susceptibility.
Medicina (Kaunas). 2025 Mar 24;61(4):574. doi: 10.3390/medicina61040574.
2
3
4
RNA metabolism is the primary target of formamide in vivo.
Sci Rep. 2017 Nov 21;7(1):15895. doi: 10.1038/s41598-017-16291-8.
5
Digested disorder, Quarterly intrinsic disorder digest (October-November-December, 2013).
Intrinsically Disord Proteins. 2015 Mar 9;3(1):e984569. doi: 10.4161/21690707.2014.984569. eCollection 2015.
6
Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data.
Biomed Res Int. 2016;2016:4783841. doi: 10.1155/2016/4783841. Epub 2016 Dec 6.
7
The Fission Yeast Pre-mRNA-processing Factor 18 (prp18+) Has Intron-specific Splicing Functions with Links to G1-S Cell Cycle Progression.
J Biol Chem. 2016 Dec 30;291(53):27387-27402. doi: 10.1074/jbc.M116.751289. Epub 2016 Nov 15.
8
Cwf16p Associating with the Nineteen Complex Ensures Ordered Exon Joining in Constitutive Pre-mRNA Splicing in Fission Yeast.
PLoS One. 2015 Aug 24;10(8):e0136336. doi: 10.1371/journal.pone.0136336. eCollection 2015.
9
Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast.
Genome Res. 2015 Jun;25(6):884-96. doi: 10.1101/gr.185371.114. Epub 2015 Apr 16.
10
Structural and functional insights into the N-terminus of Schizosaccharomyces pombe Cdc5.
Biochemistry. 2014 Oct 21;53(41):6439-51. doi: 10.1021/bi5008639. Epub 2014 Oct 8.

本文引用的文献

3
A weak spliceosome-binding domain of Yju2 functions in the first step and bypasses Prp16 in the second step of splicing.
Mol Cell Biol. 2013 May;33(9):1746-55. doi: 10.1128/MCB.00035-13. Epub 2013 Feb 25.
4
Structural bioinformatics of the human spliceosomal proteome.
Nucleic Acids Res. 2012 Aug;40(15):7046-65. doi: 10.1093/nar/gks347. Epub 2012 May 9.
5
Architecture of the spliceosome.
Biochemistry. 2012 Apr 24;51(16):3321-33. doi: 10.1021/bi201215r. Epub 2012 Apr 10.
6
CEF1/CDC5 alleles modulate transitions between catalytic conformations of the spliceosome.
RNA. 2012 May;18(5):1001-13. doi: 10.1261/rna.029421.111. Epub 2012 Mar 8.
7
Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method.
Mol Cell Biol. 2011 Jul;31(13):2667-82. doi: 10.1128/MCB.05266-11. Epub 2011 May 2.
8
Spliceosome structure and function.
Cold Spring Harb Perspect Biol. 2011 Jul 1;3(7):a003707. doi: 10.1101/cshperspect.a003707.
10
Genomic mRNA profiling reveals compensatory mechanisms for the requirement of the essential splicing factor U2AF.
Mol Cell Biol. 2011 Feb;31(4):652-61. doi: 10.1128/MCB.01000-10. Epub 2010 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验