Suppr超能文献

基线病毒遗传异质性和宿主因素与丙型肝炎病毒 1b 感染患者治疗结果预测的相关性。

Relevance of baseline viral genetic heterogeneity and host factors for treatment outcome prediction in hepatitis C virus 1b-infected patients.

机构信息

Microbiology Service, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.

出版信息

PLoS One. 2013 Aug 28;8(8):e72600. doi: 10.1371/journal.pone.0072600. eCollection 2013.

Abstract

BACKGROUND

Only about 50% of patients chronically infected with HCV genotype 1 (HCV-1) respond to treatment with pegylated interferon-alfa and ribavirin (dual therapy), and protease inhibitors have to be administered together with these drugs increasing costs and side-effects. We aimed to develop a predictive model of treatment response based on a combination of baseline clinical and viral parameters.

METHODOLOGY

Seventy-four patients chronically infected with HCV-1b and treated with dual therapy were studied (53 retrospectively -training group-, and 21 prospectively -validation group-). Host and viral-related factors (viral load, and genetic variability in the E1-E2, core and Interferon Sensitivity Determining Region) were assessed. Multivariate discriminant analysis and decision tree analysis were used to develop predictive models on the training group, which were then validated in the validation group.

PRINCIPAL FINDINGS

A multivariate discriminant predictive model was generated including the following variables in decreasing order of significance: the number of viral variants in the E1-E2 region, an amino acid substitution pattern in the viral core region, the IL28B polymorphism, serum GGT and ALT levels, and viral load. Using this model treatment outcome was accurately predicted in the training group (AUROC = 0.9444; 96.3% specificity, 94.7% PPV, 75% sensitivity, 81% NPV), and the accuracy remained high in the validation group (AUROC = 0.8148, 88.9% specificity, 90.0% PPV, 75.0% sensitivity, 72.7% NPV). A second model was obtained by a decision tree analysis and showed a similarly high accuracy in the training group but a worse reproducibility in the validation group (AUROC = 0.9072 vs. 0.7361, respectively).

CONCLUSIONS AND SIGNIFICANCE

The baseline predictive models obtained including both host and viral variables had a high positive predictive value in our population of Spanish HCV-1b treatment naïve patients. Accurately identifying those patients that would respond to the dual therapy could help reducing implementation costs and additional side effects of new treatment regimens.

摘要

背景

仅有约 50%慢性感染 HCV 基因型 1(HCV-1)的患者对聚乙二醇干扰素-α和利巴韦林(联合治疗)有应答,并且必须联合这些药物使用蛋白酶抑制剂,这增加了成本和副作用。我们旨在建立一个基于基线临床和病毒参数组合的治疗反应预测模型。

方法

研究了 74 例慢性 HCV-1b 感染并接受联合治疗的患者(53 例回顾性-训练组-,21 例前瞻性-验证组-)。评估了宿主和病毒相关因素(病毒载量以及 E1-E2、核心和干扰素敏感性决定区的遗传变异性)。使用多元判别分析和决策树分析在训练组中建立预测模型,然后在验证组中进行验证。

主要发现

建立了一个包括以下按降序排列的重要变量的多元判别预测模型:E1-E2 区病毒变异数、病毒核心区氨基酸替代模式、IL28B 多态性、血清 GGT 和 ALT 水平以及病毒载量。使用该模型可准确预测训练组的治疗结果(AUROC=0.9444;96.3%特异性、94.7%PPV、75%敏感性、81%NPV),在验证组中准确性仍然很高(AUROC=0.8148,88.9%特异性、90.0%PPV、75.0%敏感性、72.7%NPV)。通过决策树分析获得了第二个模型,在训练组中也具有较高的准确性,但在验证组中可重复性较差(AUROC=0.9072 与 0.7361)。

结论和意义

在我们的西班牙 HCV-1b 初治患者人群中,获得的包括宿主和病毒变量的基线预测模型具有较高的阳性预测值。准确识别对联合治疗有应答的患者可以帮助降低新治疗方案的实施成本和额外副作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c505/3755994/de6dc374904d/pone.0072600.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验