Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States.
J Phys Chem B. 2013 Dec 12;117(49):15714-9. doi: 10.1021/jp406441r. Epub 2013 Sep 25.
Cyclic hydrogen-bonded structures are common motifs in biological systems, providing structural stability and mediating proton transfer for redox reactions. The mechanism of proton transfer across hydrogen-bonded interfaces depends on the strength of the intermolecular coupling between bridging OH/NH vibrational modes. Here we present a novel ultrafast continuum mid-IR spectroscopy experiment to study the vibrational dynamics of the 7-azaindole-acetic acid (7AI-Ac) heterodimer as a model system for asymmetric cyclic hydrogen-bonded structures. In addition to spreading of the excitation across the whole OH band within the time resolution of the experiment, excitation of a 300 cm(-1) region of the ∼1000 cm(-1) broad OH stretching mode of the acetic acid monomer leads to a frequency shift in the NH stretching mode of the 7AI monomer. This indicates that the NH and OH stretching modes located on the two monomers are strongly coupled despite being separated by 750 cm(-1). The strong coupling further causes the OH and NH bands to decay with a common decay time of ∼2.5 ps. This intermolecular coupling is mediated through the hydrogen-bonded structure of the 7AI-Ac heterodimer and is likely a general property of cyclic hydrogen-bonded structures. Characterizing the vibrational dynamics of and the coupling between the high-frequency OH/NH modes will be important for understanding proton transfer across such molecular interfaces.
环状氢键结构是生物系统中常见的结构基元,为结构稳定性提供了支持,并介导了氧化还原反应中的质子转移。质子跨越氢键界面的转移机制取决于桥接 OH/NH 振动模式之间的分子间耦合强度。在这里,我们提出了一种新颖的超快连续中红外光谱实验,以研究 7-氮杂吲哚-乙酸(7AI-Ac)杂二聚体的振动动力学,该杂二聚体作为非对称环状氢键结构的模型体系。除了在实验的时间分辨率内激发整个 OH 带扩散之外,激发乙酸单体的约 1000 cm(-1) 宽 OH 伸缩模式的 300 cm(-1) 区域会导致 7AI 单体的 NH 伸缩模式发生频率位移。这表明尽管两个单体之间相隔 750 cm(-1),但位于两个单体上的 NH 和 OH 伸缩模式强烈耦合。这种强耦合进一步导致 OH 和 NH 带以约 2.5 ps 的共同衰减时间衰减。这种分子间耦合是通过 7AI-Ac 杂二聚体的氢键结构介导的,并且可能是环状氢键结构的普遍特性。对高频 OH/NH 模式的振动动力学和耦合进行表征,对于理解此类分子界面上的质子转移非常重要。