*Platform Technology Sciences, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
Biochem J. 2013 Dec 1;456(2):263-73. doi: 10.1042/BJ20130538.
DNA gyrase, a type II topoisomerase, regulates DNA topology by creating a double-stranded break in one DNA duplex and transporting another DNA duplex [T-DNA (transported DNA)] through this break. The ATPase domains dimerize, in the presence of ATP, to trap the T-DNA segment. Hydrolysis of only one of the two ATPs, and release of the resulting Pi, is rate-limiting in DNA strand passage. A long unresolved puzzle is how the non-hydrolysable ATP analogue AMP-PNP (adenosine 5'-[β,γ-imido]triphosphate) can catalyse one round of DNA strand passage without Pi release. In the present paper we discuss two crystal structures of the Mycobacterium tuberculosis DNA gyrase ATPase domain: one complexed with AMP-PCP (adenosine 5'-[β,γ-methylene]triphosphate) was unexpectedly monomeric, the other, an AMP-PNP complex, crystallized as a dimer. In the AMP-PNP structure, the unprotonated nitrogen (P-N=P imino) accepts hydrogen bonds from a well-ordered 'ATP lid', which is known to be required for dimerization. The equivalent CH2 group, in AMP-PCP, cannot accept hydrogen bonds, leaving the 'ATP lid' region disordered. Further analysis suggested that AMP-PNP can be converted from the imino (P-N=P) form into the imido form (P-NH-P) during the catalytic cycle. A main-chain NH is proposed to move to either protonate AMP-P-N=P to AMP-P-NH-P, or to protonate ATP to initiate ATP hydrolysis. This suggests a novel dissociative mechanism for ATP hydrolysis that could be applicable not only to GHKL phosphotransferases, but also to unrelated ATPases and GTPases such as Ras. On the basis of the domain orientation in our AMP-PCP structure we propose a mechanochemical scheme to explain how ATP hydrolysis is coupled to domain motion.
DNA 拓扑异构酶 II 是一种通过在一条 DNA 双链上形成双链断裂并将另一条 DNA 双链[转移 DNA(T-DNA)]穿过此断裂来调节 DNA 拓扑结构的酶。在 ATP 的存在下,ATP 酶结构域二聚化,以捕获 T-DNA 片段。只有两个 ATP 中的一个水解,并且释放出的 Pi 是 DNA 链通过的限速步骤。一个长期未解决的难题是,非水解型 ATP 类似物 AMP-PNP(腺苷 5'-[β,γ-亚氨基]三磷酸)如何在没有 Pi 释放的情况下催化一轮 DNA 链通过。在本文中,我们讨论了结核分枝杆菌 DNA 拓扑异构酶 II ATP 酶结构域的两个晶体结构:一个与 AMP-PCP(腺苷 5'-[β,γ-亚甲基]三磷酸)复合物出乎意料地是单体,另一个与 AMP-PNP 复合物结晶为二聚体。在 AMP-PNP 结构中,未质子化的氮(P-N=P 亚氨基)接受来自有序的“ATP 盖”的氢键,已知该氢键对于二聚化是必需的。在 AMP-PCP 中,等效的 CH2 基团不能接受氢键,导致“ATP 盖”区域无序。进一步的分析表明,在催化循环中,AMP-PNP 可以从亚氨基(P-N=P)形式转化为亚硝酰基(P-NH-P)形式。提议主链 NH 移动到质子化 AMP-P-N=P 以形成 AMP-P-NH-P,或质子化 ATP 以启动 ATP 水解。这表明一种新型的 ATP 水解解离机制不仅适用于 GHKL 磷酸转移酶,而且适用于无关的 ATP 酶和 GTP 酶,如 Ras。基于我们的 AMP-PCP 结构中结构域的取向,我们提出了一种机械化学方案来解释 ATP 水解如何与结构域运动偶联。