Suppr超能文献

健康数据与数据治理。

Health data and data governance.

作者信息

Hovenga Evelyn J S, Grain Heather

机构信息

eHealth Education Pty Ltd, Australia.

出版信息

Stud Health Technol Inform. 2013;193:67-92.

Abstract

Health is a knowledge industry, based on data collected to support care, service planning, financing and knowledge advancement. Increasingly there is a need to collect, retrieve and use health record information in an electronic format to provide greater flexibility, as this enables retrieval and display of data in multiple locations and formats irrespective of where the data were collected. Electronically maintained records require greater structure and consistency to achieve this. The use of data held in records generated in real time in clinical systems also has the potential to reduce the time it takes to gain knowledge, as there is less need to collect research specific information, this is only possible if data governance principles are applied. Connected devices and information systems are now generating huge amounts of data, as never before seen. An ability to analyse and mine very large amounts of data, "Big Data", provides policy and decision makers with new insights into varied aspects of work and information flow and operational business patterns and trends, and drives greater efficiencies, and safer and more effective health care. This enables decision makers to apply rules and guidance that have been developed based upon knowledge from many individual patient records through recognition of triggers based upon that knowledge. In clinical decision support systems information about the individual is compared to rules based upon knowledge gained from accumulated information of many to provide guidance at appropriate times in the clinical process. To achieve this the data in the individual system, and the knowledge rules must be represented in a compatible and consistent manner. This chapter describes data attributes; explains the difference between data and information; outlines the requirements for quality data; shows the relevance of health data standards; and describes how data governance impacts representation of content in systems and the use of that information.

摘要

健康是一个知识产业,它基于为支持医疗、服务规划、融资和知识进步而收集的数据。越来越有必要以电子格式收集、检索和使用健康记录信息,以提供更大的灵活性,因为这能够在多个地点以多种格式检索和显示数据,而不论数据是在哪里收集的。以电子方式维护的记录需要更高的结构和一致性才能实现这一点。利用临床系统中实时生成的记录中的数据,还有可能减少获取知识所需的时间,因为收集特定研究信息的需求减少了,前提是应用数据治理原则。连接设备和信息系统现在正在产生前所未有的大量数据。分析和挖掘大量数据(“大数据”)的能力,为政策制定者和决策者提供了关于工作、信息流、运营业务模式和趋势等各个方面的新见解,并提高了效率,推动了更安全、更有效的医疗保健。这使决策者能够应用基于从许多个体患者记录中获得的知识而制定的规则和指南,通过基于该知识识别触发因素来实现。在临床决策支持系统中,将个体的信息与基于从许多累积信息中获得的知识所制定的规则进行比较,以便在临床过程的适当时间提供指导。为了实现这一点,单个系统中的数据和知识规则必须以兼容和一致的方式呈现。本章描述了数据属性;解释了数据与信息之间的区别;概述了高质量数据所需的条件;展示了健康数据标准的相关性;并描述了数据治理如何影响系统中内容的表示以及该信息的使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验