Suppr超能文献

强迫横向电子失衡以保护肺组织:立体定向体部放射治疗肺癌的一种新方法。

Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer.

机构信息

Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario, N6A 4L6, Canada. Department of Medical Biophysics, Western University, Schulich School of Medicine and Dentistry, London, Ontario, N6A 5C1, Canada.

出版信息

Phys Med Biol. 2013 Oct 7;58(19):6641-62. doi: 10.1088/0031-9155/58/19/6641. Epub 2013 Sep 9.

Abstract

Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm(2)) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ∼1 cm). For the phantom, square fields of 1 × 1 cm(2), 3 × 3 cm(2), or 5 × 5 cm(2) were applied. However, in the patient, 3 × 1 cm(2), 3 × 2 cm(2), 3 × 2.5 cm(2), or 3 × 3 cm(2) field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was generated by considering the extent of tumour motion over the patient's breathing cycle and set-up uncertainties. All patient dose results were normalized such that at least 95% of the PTV received at least 54 Gy (i.e. D95 = 54 Gy). Further, we introduce 'LED maps' as a novel clinical tool to compare the magnitude of LED resulting from the various SBRT arc plans. Results from the phantom simulation suggest that the best lung sparing occurred for RT parameters that cause severe LED. For equal tumour dose coverage, normal lung dose (2 cm outside the target region) was reduced from 92% to 23%, comparing results between the 18 MV (5 × 5 cm(2)) and 18 MV (1 × 1 cm(2)) arc simulations. In addition to reduced lung dose for the 18 MV (1 × 1 cm(2)) arc, maximal tumour dose increased beyond 125%. Thus, LED can create steep dose gradients to spare normal lung, while increasing tumour dose levels (if desired). In the patient simulation, a LED-optimized arc plan was designed using either 18 MV (3 × 1 cm(2)) or 6 MV (3 × 3cm(2)) beams. Both plans met the D95 dose coverage requirement for the target. However, the LED-optimized plan increased the maximum, mean, and minimum dose within the PTV by as much as 80 Gy, 11 Gy, and 3 Gy, respectively. Despite increased tumour dose levels, the 18 MV (3 × 1 cm(2)) arc plan improved or maintained the V20, V5, and mean lung dose metrics compared to the 6 MV (3 × 3 cm(2)) simulation. We conclude that LED-SBRT has the potential to increase dose gradients, and dose levels within a small lung tumour. The magnitude of tumour dose increase or lung sparing can be optimized through manipulation of RT parameters (e.g. beam energy and field size).

摘要

立体定向体部放射治疗(SBRT)已迅速成为不适合手术的早期肺癌患者的首选治疗选择。该技术使用紧密贴合的兆伏(MV)X 射线束,仅通过几次治疗分次即可用消融剂量照射肿瘤。小的高能 X 射线场可能会导致低密度介质中发生侧向电子失衡(LED),从而降低肿瘤剂量。使用分析剂量计算算法,特别是在更高的射束能量下,这些剂量效应可能难以预测。因此,以前的作者建议使用低能光子(<10MV)和较大的射野(>5×5cm²)来治疗肺癌患者,以避免 LED 的负剂量学效应。在这项工作中,我们提出了一种新形式的 SBRT,称为 LED 优化 SBRT(LED-SBRT),它利用放射治疗(RT)参数设计来利用 LED 的优势。结果表明,LED-SBRT 在肿瘤/肺界面处产生增强的剂量梯度,可用于操纵肿瘤剂量和/或正常肺剂量。为了证明 LED-SBRT 的潜在益处,使用加拿大国家研究委员会(渥太华,安大略省)的 DOSXYZnrc Monte Carlo(MC)软件计算了圆柱体模型和典型肺患者中的剂量。将 6MV 或 18MV X 射线聚焦在小肿瘤体积(直径约 1cm)上。对于模型,应用 1×1cm²、3×3cm²或 5×5cm²的方形射野。然而,在患者中,在模拟中使用 3×1cm²、3×2cm²、3×2.5cm²或 3×3cm²的射野尺寸以确保在上下方向上覆盖靶区。为了模拟(对称)模型中的 180°SBRT 弧,计算了单个射束轮廓,将其旋转并以 1°段求和以累积弧形剂量分布。对于患者,使用 36 个相等加权(和间隔)的射束聚焦在肿瘤中心来模拟 360°的弧。生成一个计划靶区(PTV),考虑到患者呼吸周期和设置不确定性中肿瘤运动的范围。所有患者剂量结果均归一化,使得至少 95%的 PTV 接受至少 54Gy(即 D95=54Gy)。此外,我们引入了“LED 图”作为一种新的临床工具,用于比较各种 SBRT 弧形计划中产生的 LED 的幅度。模型模拟结果表明,导致严重 LED 的 RT 参数发生时,肺保护效果最佳。对于相等的肿瘤剂量覆盖,目标区域外 2cm 处的正常肺剂量(92%)降低至 23%,将 18MV(5×5cm²)和 18MV(1×1cm²)弧形模拟结果进行比较。除了 18MV(1×1cm²)弧形的肺剂量降低之外,最大肿瘤剂量增加超过 125%。因此,LED 可以创建陡峭的剂量梯度来保护正常肺,同时增加肿瘤剂量水平(如果需要)。在患者模拟中,使用 18MV(3×1cm²)或 6MV(3×3cm²)射束设计了一个 LED 优化的弧形计划。两个计划都满足了靶区的 D95 剂量覆盖要求。然而,LED 优化计划使 PTV 内的最大、平均和最小剂量分别增加了 80Gy、11Gy 和 3Gy。尽管肿瘤剂量水平增加,但与 6MV(3×3cm²)模拟相比,18MV(3×1cm²)弧形计划改善或维持了 V20、V5 和平均肺剂量指标。我们得出结论,LED-SBRT 具有增加小肺肿瘤内剂量梯度和剂量水平的潜力。通过操纵 RT 参数(例如,射束能量和射野大小)可以优化肿瘤剂量增加或肺保护的程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验