Department of Mechanical Engineering, National University of Singapore, Singapore-117576.
Phys Chem Chem Phys. 2013 Oct 28;15(40):17240-9. doi: 10.1039/c3cp52311j.
We report here doping of Fe(2+) and/or Mg(2+) in LiMnPO4 cathode material to enhance its lithium storage performance and appraise the effect of doping. For this purpose, LiMn0.9Fe(0.1-x)MgxPO4/C (x = 0 and 0.05) and LiMn0.95Mg0.05PO4/C have been prepared by a ball mill assisted soft template method. These materials were prepared with similar morphology, particle size and carbon content. Amongst them, the isovalent co-doped LiMn0.9Fe0.05Mg0.05PO4/C sample shows better electrochemical performance compared to LiMn0.9Fe0.1PO4/C and LiMn0.95Mg0.05PO4/C samples. For instance, a lithium storage capacity of 159 mA h g(-1) is obtained at 0.1 C for LiMn0.9Fe0.05Mg0.05PO4/C material with a relatively low polarization of 139 mV. This is in sharp contrast to LiMn0.9Fe0.1PO4/C and LiMn0.95Mg0.05PO4/C which show only 136.8 and 128.4 mA h g(-1) at 0.1 C with the polarization of ~222 and 334 mV respectively. Further, the LiMn0.9Fe0.05Mg0.05PO4/C electrode delivers discharge capacities of 155.8, 141.4, 118.8, 104.6, 81.4 and 51.8 mA h g(-1) at 0.2, 0.5, 1, 2, 5 and 10 C respectively. This electrode material also retains a capacity of 116 mA h g(-1) at 1 C after 200 cycles, which is 96% of its initial capacity. Such improved cycling stability of LiMn0.9Fe0.05Mg0.05PO4/C is attributed to the suppressed Mn dissolution in the electrolyte compared to the other samples. Further, during the Li extraction process, delithiated phases created from the Fe(2+)/Fe(3+) redox reaction (3.45 V) favor enhanced electrochemical activity of the succeeding Mn(2+)/Mn(3+) redox couples. The fully charged state (4.6 V) contains a partially lithiated phase owing to the presence of electrochemically inactive Mg(2+). The presence of such lithiated phase provides a favourable environment for the subsequent lithium insertion process. We also observe improved electronic conductivity and Li-ion diffusion for the co-doped sample compared to LiMnPO4 doped with either Fe(2+) or Mg(2+) by impedance measurements. The improved storage performance of co-doped LiMnPO4 is thus explained in terms of (i) favorable extraction and insertion reactions and (ii) enhanced transport properties.
我们在此报告在 LiMnPO4 阴极材料中掺杂 Fe(2+)和/或 Mg(2+)以提高其锂存储性能,并评估掺杂的效果。为此,通过球磨辅助软模板法制备了 LiMn0.9Fe(0.1-x)MgxPO4/C(x = 0 和 0.05)和 LiMn0.95Mg0.05PO4/C。这些材料具有相似的形态、粒径和碳含量。其中,等价共掺杂的 LiMn0.9Fe0.05Mg0.05PO4/C 样品与 LiMn0.9Fe0.1PO4/C 和 LiMn0.95Mg0.05PO4/C 样品相比表现出更好的电化学性能。例如,LiMn0.9Fe0.05Mg0.05PO4/C 材料在 0.1 C 下的锂存储容量为 159 mA h g(-1),极化约为 139 mV。这与 LiMn0.9Fe0.1PO4/C 和 LiMn0.95Mg0.05PO4/C 形成鲜明对比,它们在 0.1 C 下的极化分别为222 mV 和334 mV,锂存储容量仅为 136.8 和 128.4 mA h g(-1)。此外,LiMn0.9Fe0.05Mg0.05PO4/C 电极在 0.2、0.5、1、2、5 和 10 C 下的放电容量分别为 155.8、141.4、118.8、104.6、81.4 和 51.8 mA h g(-1)。该电极材料在 200 次循环后仍保持 116 mA h g(-1)的容量,为初始容量的 96%。LiMn0.9Fe0.05Mg0.05PO4/C 如此改善的循环稳定性归因于与其他样品相比,电解质中 Mn 的溶解得到抑制。此外,在 Li 提取过程中,来自 Fe(2+)/Fe(3+)氧化还原反应(~3.45 V)的脱锂相有利于增强后续 Mn(2+)/Mn(3+)氧化还原对的电化学活性。完全充电状态(4.6 V)由于存在电化学惰性的 Mg(2+)而包含部分脱锂相。这种脱锂相的存在为随后的锂插入过程提供了有利的环境。我们还通过阻抗测量观察到与仅掺杂 Fe(2+)或 Mg(2+)的 LiMnPO4 相比,共掺杂样品具有改善的电子电导率和 Li 离子扩散性。因此,共掺杂 LiMnPO4 的存储性能得到改善可以用以下两个方面来解释:(i)有利的提取和插入反应,以及(ii)增强的传输特性。